

药品注册药代劲力学研究中 需关注的问题

孙涛

CDE · CFDA

声明

本报告内容仅代表个人对药品注册相关药代动力学研究的理解和认识,不代表官方观点。

OF THE EVALUATION OF THE PROPERTY OF THE PROPE

主要内容

- >药代动力学在药品 注册中的作用
- >药代动力学研究的主要内容
- >药代动力学研究的基本原则
- > 药代动力学研究中需关注的问题
- 〉结语

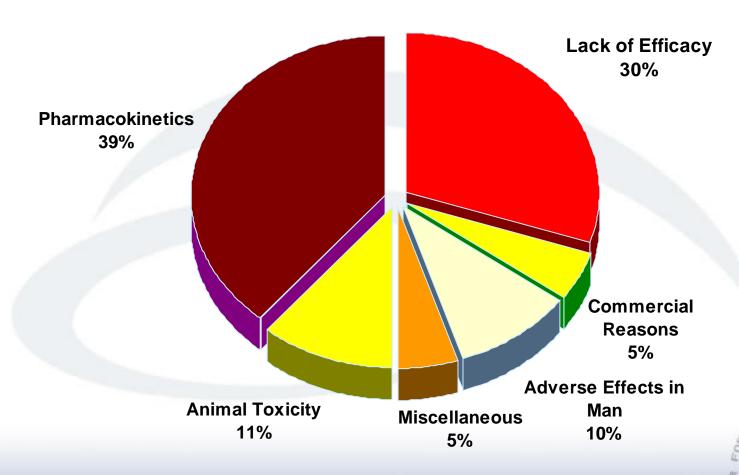
- 揭示药物在体内的动态变化规律
- 提供重要的药代动力学参数
- ·阐明药物ADME的过程和特点
- · 为给药途径和剂型的选择提供安全性、有效性与剂量相关性的依据
- 为临床研究提供参考,提高临床试验设计的合理性
- 为临床合理用药提供信息

药代动力学是新药研发的重要工具和评价信息

据国外资料报道:

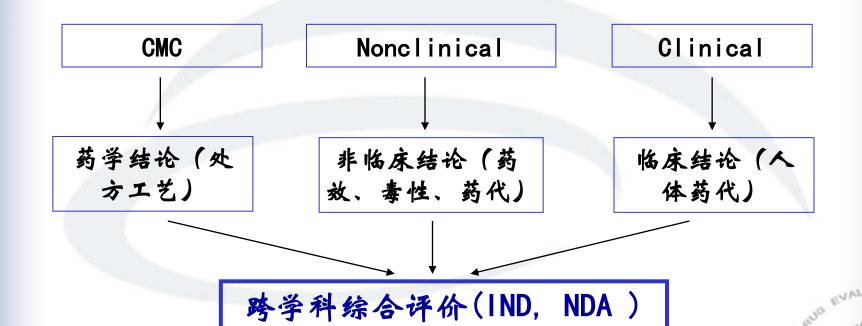
在临床前阶段因药代及相关原因被淘汰的药物占到被淘汰药物总量的18%;

药代成为紧随在安全性之后的导致药物在<u>临床前</u>被淘汰的重要原因。


药代动力学是药物研发与评价的主线。贯穿于药物研发与评价的整个过程。

药代动力学是药物研发与评价的重要决策点之一。

暴露量是关联药效与毒性、临床前与临床最直接、最可靠的评价指标。


新药临床试验阶段失败的可能原因

桥梁和核心

药品注册技术评价

二、药代动力学研究的主要内容

> 非临床药代动力学研究

吸收

Absorption

分布

Distribution

代谢

Metabolism

排泄

Excretion

生物样品分析方法的建立和确证

血药浓度-时间曲线及药代动力学参数

药物吸收研究

药物组织分布研究

药物排泄研究

药物与血浆蛋白的结合

药物的代谢转化

转运体研究

对药物代谢酶活性的影响

物质平衡

> 毒代动力学研究

二、药代动力学研究的主要内容

> 临床药代动力学研究

生物样品分析方法的建立和确证

健康志愿者药代动力学研究

- 1、单次给药
- 2、多次给药
- 3、食物影响
- 4、代谢产物
- 5、药物相互作用

(物质平衡)

患者药代动力学研究 (PK/PD)

特殊人群药代动力学研究

- 1、肝功能损害患者
- 2、肾功能损害患者
- 3、老年人
- 4、儿科人群

二、药代动力学研究的主要内容

> 生物等效性研究

"在相似的试验条件下单次或多次服用相同剂量的试验药物后, 受试制剂中药物的吸收速度和吸收程度与参比制剂的差异在可接受范围内。"

-CFDA

生物样品分析方法的建立和确证

三、药代动力学研究的基本原则

- > 研究目的明确
- > 分析方法可靠
- 〉试验设计合理
- > 所得参数全面,满足评价要求
- 对试验结果进行综合分析与评价
- > 具体问题具体分析

- > 非临床药代动力学研究
- > 临床药代动力学研究
- > 生物等效性研究

OF THE TALUATION EVALUATION TO THE TALUATION

——非临床

受试药物

- · 原料 Or 制剂
- 质量相对稳定
- 与药效学和毒理研究样品有关联性
- 保存条件、配制方法
- 给药途径

THE TALLATION EVALUATION TO THE TALLATION

——非临床

动物选择

- 相关动物
- 动物种数
- 一致性
- 模型动物
- 其他考虑

——非临床

方法学

- ◆未提供方法学验证资料 (包括血浆样品、组织样品等)
- ◆定量范围未能涵盖全部待测浓度 (存在外推求算未知样品的浓度问题)
- ◆未考察稀释可靠性
- ◆分析过程中选择或者含弃部分数据,未说明依据和理由

血药浓度-时间曲线

- ◆采样点设计不合理,尤其是末次时间点过早,不能反映药物在体内的真实性情况
- ◆提供的药代参数不全,应包含Cmax、Tmax、AUC、Vd、t_{1/2}、CL、MRT等参数
- ◆多次给药:未说明给药间隔和给药次数的依据;未提供3次稳态谷浓度的数据;
- 未对稳态下与单次给药的药代特点和差异进行比较分析

——非临床

血浆蛋白结合

◆对于血浆蛋白结合率高、安全范围窄的药物,建议选择临床上可能合并使用的药物 开展体外药物竞争结合试验。

组织分布

- ◆测定组织较少,应至少对13种组织药物浓度进行分析。
- ◆很少提供通过生理性屏障的评价,如:通过血脑屏障情况;在宫内暴露情况,通过 乳汁分泌情况 (毒代)。
- ◆应关注在药效或毒性靶组织分布情况,如:精神神经药物在脑、脑脊液中分布;皮 肤用药在皮肤组织中分布 (角质层、表皮、真皮);眼科药物在眼组织中分布。
- ◆建议采用放射性同位素标记技术,研究药物相关物质在体内的分布情况。
- ◆若某一组织中药物或代谢产物浓度较高,应增加检测时间点,评价药物消除情况。
- ◆黑色素组织中的分布情况。

2017/6/27

四、药代动力学研究中需美运的问题 ——非临床

- ◆ 尽可能早进行代谢产物谱研究,以尽可能早发现毒理学试验所采用动物和人体中 代谢产物的差异。
- 》采用人和动物肝微粒体、肝组织、肝细胞进行的体外代谢产物谱研究试验应在临 床试验前完成。
- ▶在动物中进行的体内代谢产物研究应在研发早期完成。
- ▶人体内代谢产物研究一般在研发的相对后期 (III期前) 完成,建议尽可能早进行。
- ◆当人体代谢产物的暴露量超过药物相关物质总暴露量的10%,应关注其安全性。
- >人体特有代谢产物。
- >人体暴露量明显超过毒理学试验中最大暴露量。
- ◆在人尿液中药物代谢产物排泄量占给药量的10%以上,或粪便排泄结果提示主要通过胆汁经粪便排泄,应关注代谢产物对肾脏或胆管的毒性,根据Case-by-Case原则对代谢产物进一步评价。

——非临床

例(某临床批件要求):

建议临床试验中对人体代谢产物进行研究。

在获得人代谢产物数据后,应将大鼠和犬体内代谢产物与人体内代谢产物进行比较;

若在人体中发现特有代谢产物或者高比例代谢产物(大于药物相关总暴露量的10%,且毒理学试验中动物体内相应代谢产物暴露量不能覆盖人体代谢产物暴露量)时,应考虑按照相应指导原则对代谢产物进行非临床研究。

——非临床

排泄和物质平衡

- ◆仅对原型药物的排泄进行研究
- 户对主要通过代谢消除的药物, 需测定尿液、粪便和胆汁中的代谢产物, 获得排泄 途径、排泄速率以及排泄形式的信息。
- ▶推荐采用放射性同位素标记技术进行物质平衡研究。
- □可能需要对尿液、粪便和胆汁中代谢产物进行鉴定
- □通常以占给药剂量的百分数表述。
- □有助于评价药物在体内的清除特点(排泄途径、排泄速率、排泄形式)。
- □有助于评价药物在体内的代谢途径、代谢产物谱。
- □动物样品中分离出的代谢产物可做参比品用作临床和非临床代谢产物定量研究。
- ◆总回收率低
- 》总放射性回收率小于90%,应评价样本收集时间点是否合适;应测定尸体残留总放射量,并结合组织分布试验结果,评估药物是否在动物体内有储留;必要时应解剖动物,观察主要储留部位和组织。

——非临床

例(某临床批件要求):

非临床药代动力学研究中,物质平衡研究采用LC-MS/MS对排泄物样品进行测定,原型药物总回收率约为6.74%,仍有绝大部分药物未阐明其排泄形式。

建议在后续研究中采用放射性同位素标记法,对本品的物质平衡进行补充研究。

本品在体内代谢广泛,建议在后续研究中结合人体药代动力学情况对本品的生物转化进行研究。

——非临床

药物-药物相互作用

- ◆缺乏DDI评价分析(尤其是拟联合用药的新药)
- >药物-药物相互作用是新药开发失败的重要原因之一。
- >药物在吸收、分布、代谢、排泄各个环节均有可能发生相互作用。
- →药物对体液pH值(胃液、尿液等)、药物代谢酶(CYP450酶、葡萄糖醛酸结合酶、硫酸转移酶等)、重要转运体(P-gp、OAT、OCT、MRP、BCRP等)的影响均可导致DDI。
- 〉推荐开展代谢酶相关(表型鉴定、酶抑制、酶诱导)以及转运体的体外试验,并结合药物理化性质、蛋白结合率、动物体内药代动力学试验综合分析预测人体可能发生的药物-药物相互作用。

——非临床

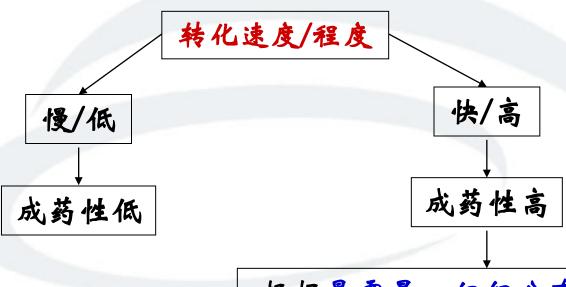
改良型药物的非临床药代动力学研究

- ☀ 前药
- * 手性药物
- ☀ 改盐/改酸根
- 🌞 改处方/给药途径
- ☀ 缓释制剂
- ☀ 特殊制剂
- *新复方

——非临床

改良型药物的非临床药代动力学研究

- > 立题依据
- > 桥接比较
- 》综合评价


OF DELIG EVALUATION EVALUATION TO SELECT EVALUATION

---非临床

改良型药物的非临床药代动力学研究

- > 前药 立题依据(开发目的)
 - 与原药(活性成分)的药代比较
 - 体内转化速度和程度

根据暴露量、组织分布、代谢产物等变化考虑对其他研究的要求。

--非临床

改良型药物的非临床药代动力学研究

> 手性药物

- 立题依据(开发目的)
- 手性分析方法
- 体内消旋化考察
- 对映体、消旋体间药代比较
- √体内消旋化的速度/程度是成药性的决策点。
- √ADME的差异是后续研究选择的决策点。

——非临床

改良型药物的非临床药代动力学研究

- > 改盐/改酸根
 - 药代动力学比较
 - 重点关注:
- > 立题依据 (开发目的)
- > 体内物质基础的一致性
- > 药代特征的差异

相关动物种属中的药代动力学比较试验

- √主要考察: 药代参数、药时曲线
- ✓对于在特定组织发挥作用的药物,应进行组织分布比较试验
- √对于有活性代谢产物的药物,应监测相应代谢产物,并进行体外代谢比较。

2017/6/27

——非临床

改良型药物的非临床药代动力学研究

- > 改变处方/给药途径
- 所有的给药途径均有可能产生系统暴露
- 改变制剂处方/给药途径均有可能导致PK/ADME的改变
- 应将新制剂处方/新给药途径与已批准药品进行全面的PK/ADME 对比。根据这些数据以及已获得的人体数据,评价已有的全身 毒性信息是否足够充分
- 若已有的全身毒性信息不足以支持新制剂处方/新给药途径的暴露情况,或全身暴露模式发生了显著性改变,提示应进行附加毒性试验,如安全药理学试验、生殖毒性试验、致癌性试验等

2017/6/27

改良型药物的非临床药代动力学研究

——非临床

> 改变处方/给药途径

Nonclinical Safety Evaluation of Reformulated Drug Products and Products Intended for Administration by an Alternate Route

Guidance for Industry and Review Staff

Good Review Practice

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> October 2015 Pharmacology/Toxicology

——非临床

改良型药物的非临床药代动力学研究

> 缓释制剂

背景:处方和工艺的复杂性 体外释放度研究的局限性

- •安全性
 - (1) 单次剂量远超过释制剂,且安全范围较窄的
 - (2) 安全范围窄或可能影响生命体征的
 - (3) 用于某些特殊疾病和人群的
- •有效性

体内药物浓度下降可能引起有效性降低

- •处方工艺的合理性
- > 比较研究:对照药为常释制剂或已上市缓释制剂
- > 至少在开始人体试验前完成动物药代试验
- > 采样点应足以评价延迟释放的整个持续时间

(3~5个t1/2, 或C_{max}的1/10~1/20)

Orline Events Ev

——非临床

30

改良型药物的非临床药代动力学研究

- > 特殊制剂 (脂质体、纳米制剂等)
 - ▶ 药代考察重点 吸收 (药时曲线) 分布 (药效靶器官/毒性靶器官) 消除 (半衰期)
 - > 比较研究
 - > 总暴露量、结合 (包裹) 药物暴露量、<u>游离药物暴露量</u>

——非临床

改良型药物的非临床药代动力学研究

> 特殊制剂 (脂质体、纳米制剂等)

例——某注射用紫杉醇(白蛋白结合型) 建议补充如下资料:

- 1.请在体外试验中比较本品与原研产品在全血、血浆及模拟人血浆的体外药物结合释放特性。
- 2. 请首先阐述国外紫杉醇白蛋白制剂与普通紫杉醇注射液的药代特性差异。然后补充研究结合型紫杉醇和游离紫杉醇在血液和肿瘤组织的药物暴露量比值、非结合药物在体内的清除。

——非临床

改良型药物的非临床药代动力学研究

> 新复方

药代考察重点:主药间的药代动力学相互影响

方法:以单药为对照进行比较研究 代谢相关信息的调研

——非临床

PK/PD研究

PK/PD研究的意义

- > 阐明血药浓度/效应部位浓度-效应的关系
- > 帮助进一步理解药物的作用机制 (物质基础)
- > 指导临床给药方案,如缓控释,或者负荷剂量给药
- > 评价生理、病理因素对药代动力学的影响
- > 做为临床治疗监测指标,指导精准用药

——非临床

PK/PD研究

PK/PD研究的方法

> 体外PK/PD模型

如:借助体外装置模拟抗菌药物在体内的药代动力学过程和药效动力学过程,研究动态情况下抗菌药物与细菌的作用关系。

- > 动物疾病模型PK/PD研究
- > 人体PK/PD研究

OF DENG EVALUATION OF STREET BY ALVATION

——非临床

PK/PD研究

PD指标的选择

- > 最好可用定量参数描述,以得到浓度-效应曲线
- > 药效指标对药物浓度变化相对敏感
- > 个体之间变异性较小
- > 应具有一定的临床意义
- > 尽可能选择客观指标而非主观指标
- > 尽可能在同一个体上可反复测量

--非临床

PK/PD研究

临床前补充资料要求:

例1: 现有药代动力学试验结果显示本品大鼠和犬口服生物利用度较低。请补充感染动物模型经口给药PK/PD研究,并说明本品在体内发挥抗菌活性的物质基础。

例2:本品拟用于急性缺血性脑卒中。药代动力学研究显示本品脑内分布少,量效关系研究不充分。建议采用动物病理模型进一步开展本品PK/PD研究,并考察在病理状态下本品通过血脑屏障的情况,为充分提示本品的有效性提供物质基础方面的证据。

---非临床

PK/PD研究

临床前补充资料要求:

例3:本品为长效局麻药。现有药效学试验的给药途径(区域阻滞)与临床拟用给药方式(手术切口周围多点注射)不同, 尚不能充分提示在临床拟用给药方式下的有效性。

请选择合适的动物模型和方法,采用与临床一致的给药方式进行药效学试验,并在确定有效剂量后进行PK/PD研究,为注射点至伤口距离、麻醉起效及维持时间和本品的立题提供依据。

--非临床

PK/PD研究

临床试验批件要求:

例1: 鉴于PK/PD研究对II期临床试验的剂量设置非常关键,故请在I期临床试验期间进行PK/PD研究。(抗感染药)

例2: 本品属于阿片样受体激动剂,具有成瘾性,建议不采用健康志愿者作为研究对象,耐受性和药代研究应尽可能选用疼痛患者为受试者,进行PK研究的同时进行PD研究。(镇痛药)

——非临床

毒代动力学研究——毒性剂量下药物在体内处置的时间过程

- 描述药物在动物造成的全身暴露量和其与剂量和时间关系。
- 描述重复给药的暴露延长对代谢过程的影响,包括对代谢酶的影响,如阐明对药物代谢酶的诱导或抑制作用,预测药物相互作用。
- 阐明暴露量与毒性反应的关系,评价其临床相关性,如评价NOAEL ,毒性反应机制、杂质限度、药物蓄积性等,分析和预测动物毒性 表现对临床安全性评价的价值。
- 评价药物在不同种属、性别、年龄、身体状态(如疾病或怀孕)的毒性反应,支持非临床毒性研究的动物种属选择和用药方案。
- 为后续非临床毒性研究和临床试验剂量选择提供依据。

---非临床

毒代动力学研究

关注点:

- 〉伴随毒性试验进行
- > GLP (SOP)
- > 方法学验证
- > 采样点设计
- > 采样动物
- > 样品采集 (靶组织、<u>胚胎、乳汁</u>)

——临床

临床药代动力学研究

创新药、进口药人体药代动力学研究关注点:

- > 剂量设置范围
- ▶物质平衡、食物影响、PK影响内外在因素、 PK/PD、DDI等研究
- **一种族敏感性分析**

——临床

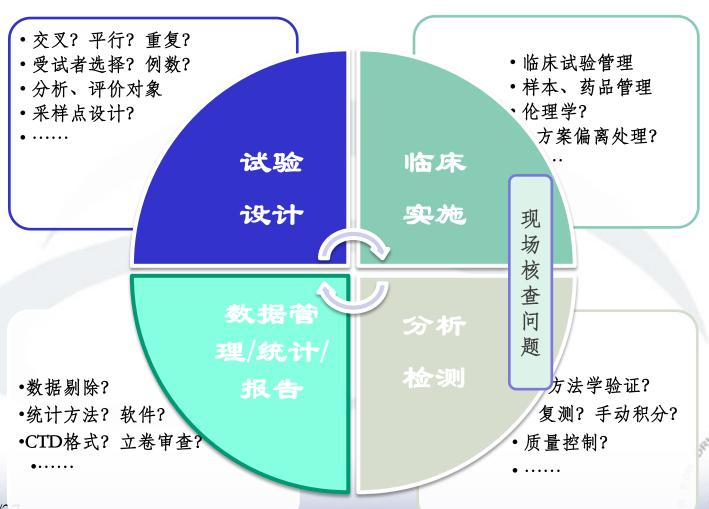
临床药代动力学研究

案例(临床药代方案):

- >本品多次给药药代研究设置的剂量组未能覆盖拟定的||期临床试验探索剂量。
- ▶ 恒河猴单次给药后,Tmax约为5.5小时,t1/2为9.36~11.3 h,预计人体内 Tmax和t1/2与其相似或稍长。建议根据临床前研究结果进一步优化人体药代动力学研究血样采集时间点。
- > 因本品||期临床试验为添加治疗,需开展食物影响研究和药物相互作用研究。
- 本品临床前药代动力学研究显示,猴多次给药蓄积因子为1.31;物质平衡研究原形药物总回收率仅为6.74%,绝大部分药物未阐明排泄形式;口服绝对生物利用度仅为20%~30%。建议根据其生物药剂学特征进一步进行制剂优化。

——生物等效性

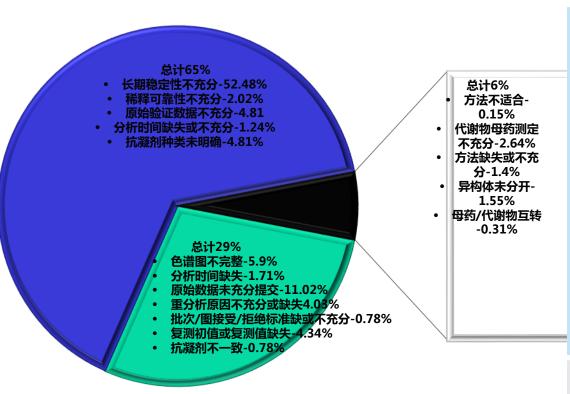
生物等效性研究

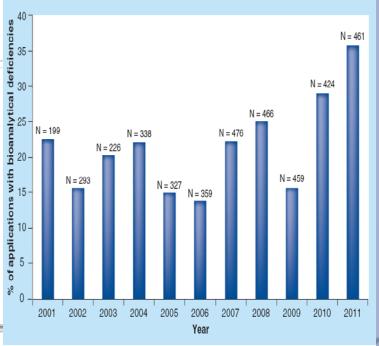

评价两制剂的临床可替代性(治疗等效),标接已有的临床有效性和安全性数据。

- > 药代动力学研究 (Concentration-Time curve)
- > 药效动力学研究 (Effect-Time curve)
- > 临床比较研究(综合疗效终点)
- > 体外研究 (体外溶出度比较)

——生物等效性

审评关注点


2017/6/2


44

——生物等效性

FDA对11年间4028项ANDA的生物分析缺陷总结(2001-2011)

Figure 3. Percentage of applications that contained bioanalytical deficiencies. N is the total number of drug approvals for the corresponding years.

Williamson et al. Bioanalysis, 2014

——生物等效性

例:方法学验证及样品分析问题

品种描述:

方法学验证及样品分析报告存在以下问题:

1、未考察专属性及残留效应; 2、多处手动积分无合理说明; 3、部分样品冻融次数 (4次) 超过冻融稳定性验证范围 (3次); 4、有效质控数不足: 样品浓度集中于低质控浓度附近,部分分析批低浓度质控不合格率超过50%。

审评结论:

本品方法学验证和样品分析存在缺陷,未达到现行技术标准要求,不符合《药品注册管理办法》154条(三)的有关规定。

国内外药代动力学研究的差异

- > 研发策略的不同
- > 分析方法和分析技术的不同
- > 数据结果综合分析能力的不同

OF DEUTO EVALUATION

四、药代动力学研究中需关注的问题 ——国内外药代动力学研究的差异 研发策略的不同

国外一般在药物发现早期开展高通量ADME研究,并优化先导化合物

- ✓ 采用计算机模拟筛选方法预测药物的ADME特征。
- √ 采用高通量方法测定溶解度、解离度、亲酯性等可能影响ADME的理化 参数。
- √ 采用Caco-2细胞系、MDCK细胞系、PAMPA人工膜等体外方法预测药物的吸收。
- √ 采用人肝微粒体、肝细胞、重组人CYP450酶等体外系统评估药物的代谢稳定性、代谢酶表型。

国内一般在药物发现晚期开展上述研究,常与体内药代、安评同步开展

——国内外药代动力学研究的差异

分析方法和技术的不同

- 国外一般85%以上的新药采用放射性同位素标记技术
- □ 现有分析技术中, 仅放射性示踪技术可以直接明确地揭示每种代谢产 物占药物相关物质总暴露量的百分比。
- □可以考察物质平衡、排泄途径及排泄物质形式。
- □可以获得药物相关物质的组织分布数据
- 国内较少采用放射性同位素标记技术
- □很少进行物质平衡研究,无法确定药物的排泄途径及排泄形式。
- □仅对原形药物的组织分布进行研究。

——国内外药代动力学研究的差异

对研究结果综合分析评价能力的不同

国外一般会对药物ADME特征做综合性的分析评价

- > 体外数据与体内数据的一致性分析
- > 代谢途径、速率、产物的种属差异及安评种属选择依据
- ➤ PK/PD、TK/TD的综合性分析
- > 不成比倒的药物代谢产物的研究
- > 联合用药的药物-药物相互作用分析
- > 人体关键药代参数的预测

国内很多情况下仅简单罗列结果,不做综合分析评价

OF DEUTO EVALUATION OF THE STATE OF THE STAT

五、结语

- 药代动力学不仅仅是认知药物基本特性的手段,更是多个研发评价阶段的关键决策点。
- > 药代动力学研究与其它学科研究密不可分。
- > 药代动力学研究者需要具有综合分析与评价能力。
- ▶ 随着新药研发手段的不断进展,药代动力学与定量药理学、 特化医学、Biomarker、PK/PD模拟、群体药代动力学等的 相互应用和支持越来越多。
- 》申请人、研究者和审评者携手,共同促进我国药品注册药 代动力学研究水平的进一步提高。

致谢

感谢在本讲稿制作过程中提供大力支持的CDE同事: 戴学栋、闫丽萍、王海学、李丽、魏春敏!

OF DELIC EVALUATION STATEMENT OF STATEMENT O

