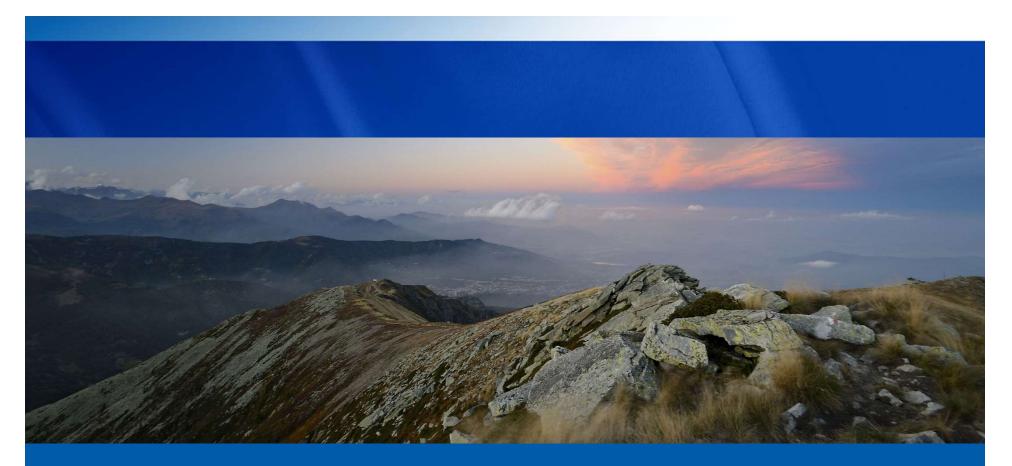
Quantitative Clinical Pharmacology in Drug Development and Drug Approval

Xiao Shelley Hu, Ph.D.

Director, Head of DMPK and Clinical Pharmacology

Wave Life Sciences, Cambridge, MA


Overview

Case 1: : QCP in DDI Assessment for Drug A

Case 2: Application of QCP in Plegridy Approval

Model Based Drug Development

²QCP: quantitative clinical pharmacology

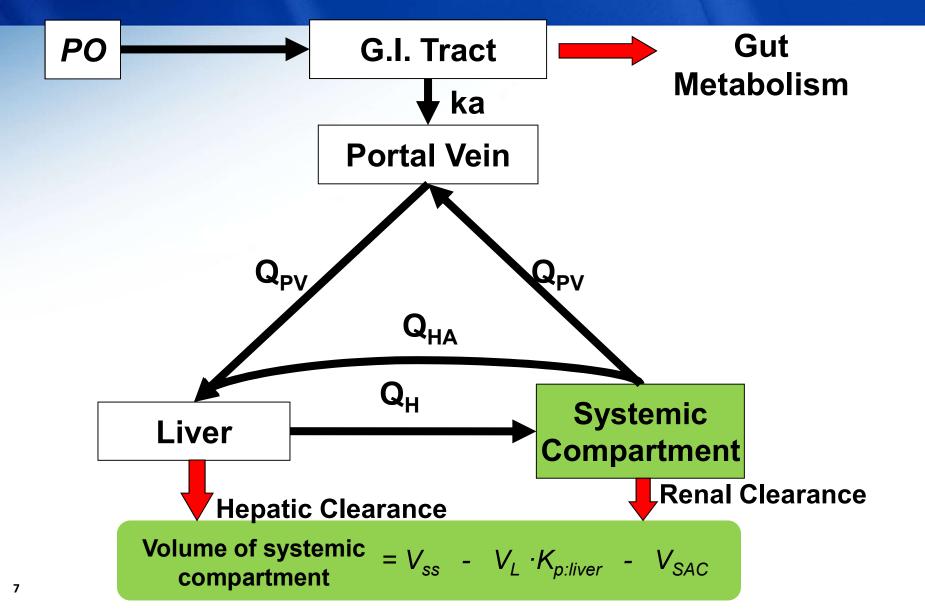
Case Study 1: QCP in DDI Assessment for Drug A

CYP Inhibition by Drug A

Ruled out clinical DDI for CYP inhibition

CYP450	Assay	AUCR (600 mg)
CYP1A2	Phenacetin O-deethylase	1.02
CYP2B6	Bupropion hydroxylase	1.02
CYP2C8	Amodiaquine <i>N</i> -deethylase	1.17
CYP2C9	Diclofenac 4'-hydroxylase	1.05*
CYP2C19	S-Mephenytoin 4'-hydroxylase	1.01
CYP2D6	Bufuralol 1'-hydroxylase	1.01
CYP3A4/5	Testosterone 6β-hydroxylase	ND
CYP3A4/5	Midazolam 1'-hydroxylase	1.10

All AUCR below 1.25 per guidance, no further action needed


Drug A as an Inhibitor of Transporters

Transporter	Substrate	
P-gp	Digoxin (10 µM)	
BCRP	Prazosin	
OATP1B1	³ H-Estradiol-17β-glucuronide (50 nM)	
OATP1B3	³ H-Estradiol-17β-glucuronide (50 nM)	
OCT2	¹⁴ C-Metformin (10 μM)	
OAT1	³ H-Aminohippurate (1 μM)	
OAT3	³ H- Estrone-3-sulfate	
MATE-1	¹⁴ C-Metformin (10 μM)	
MATE-2K	¹⁴ C-Metformin (10 μM)	

Probe Substrates of Transporters

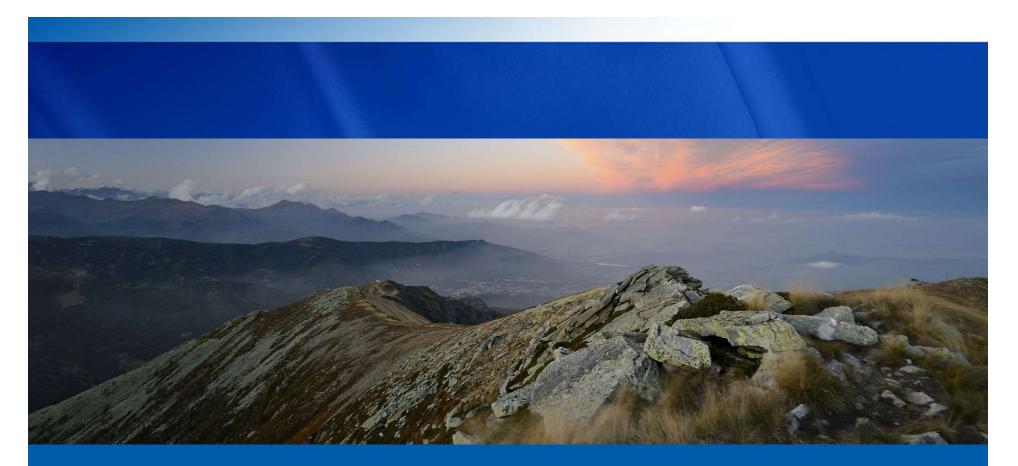
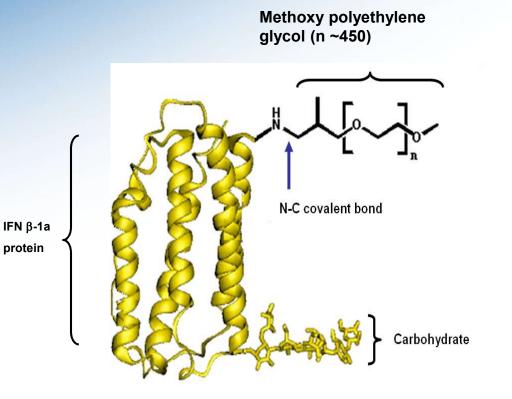

Substrate	Transporters	Dose	Route
Digoxin	pgp	0.5 mg	Oral
Rosuvastatin	OATP1B1 and BCRP	20 mg	Oral
Methotrexate	OAT1/OAT3	200 mg/m ²	IV

Illustration of the minimal PBPK model

SUMMARY


- Clinical studies: pgp, OATP1B1 and BCRP inhibition by Drug A
- Test staggering strategy for OATP1B1
- Waiver application: OAT1 and OAT3 inhibition by Drug A

Case Study 2: QCP in Plegridy Approval

Plegridy Overview

- Interferon β -1a: approved to treat multiple sclerosis (MS) in 1996 (30 µg IM once weekly);
- Plegrigy: attacheing 20K to the αamino group of the N-terminal amino acid residue.
- Longer half-life and greater exposure
- Plegridy was approved in 2014 by FDA and EMA to treat MS (125 µg, SC, every two week)

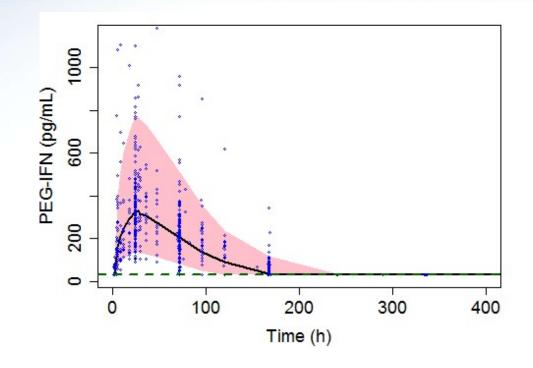
Application of QCP

- Dose rationale in pediatric subjects
- Support of the optimal dosing regimen in the label

Dose Selection Rationale for Plegridy PIP

Question

- What dose should be given to pediatric patients?
- Knowledge available
 - Two Phase 1 HV studies
 - One PK model

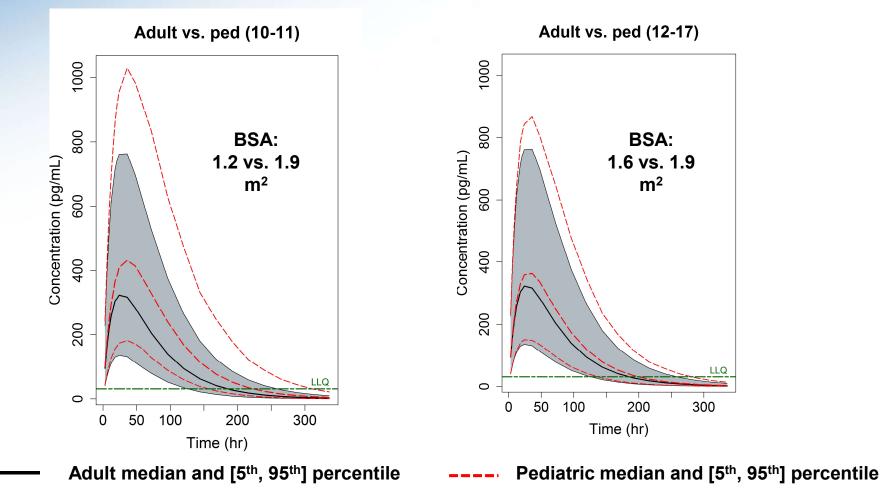

PIP: **P**aediatric Investigation **P**lan; HV: healthy volunteer

Population PK Model from Phase 1

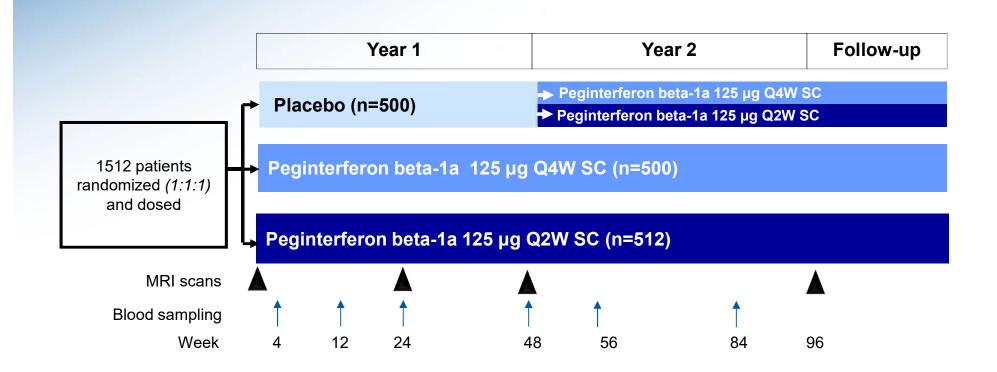
Model:

CL: total body clearance Ka: absorption rate Ke: elimination rate V: volume of distribution

- Covariates:
 - No impact by age, body weight, body mass index, or body surface area
 - Full dose (125 μg) was proposed


Feedback from PDCO

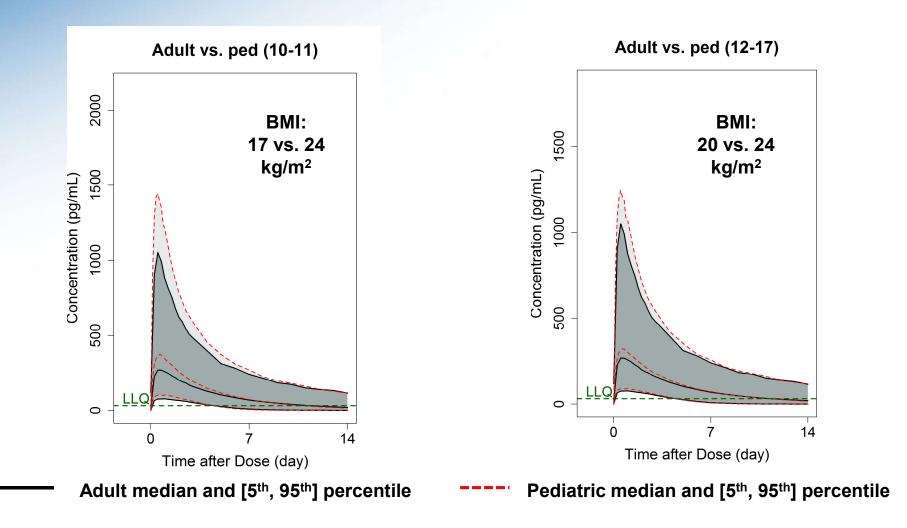
Request from PDCO to provide further rationale


 Reference PEGASYS and PEGINTRON pediatric dosing regimen

Dose Rationale in Pediatric Trial

Simulation in peds based on BSA extrapolation

Pivotal Phase 3 Study Design


Final Population PK Model

■ Model: Ka V Ke: CL/V

CL: total body clearance Ka: absorption rate Ke: elimination rate V: volume of distribution

- Covariates:
 - BMI affected both AUC and C_{max}

Final PK Model Simulation for Pediatric Study

Simulation Conclusion

Model based simulations support full dose of 125 µg in the ongoing pediatric study

Phase 3 Efficacy and Regulatory Request

- 1° Endpoint: annualized relapse rate
 - Placebo: 0.397
 - Every 2 weeks: 0.256 (p=0.0007)
 - Every 4 weeks: 0.288 (p=0.0114)
- Request from EMA on Day 80 and 120 questions to build an exposure-response model
 - Is there a relationship between exposure and efficacy?

Model 1: AUC-ARR

Mathematical Model (negative binomial model/Poisson-Gamma mixture)

Relapse_i ~ Poisson(λ_i *Duration_i)

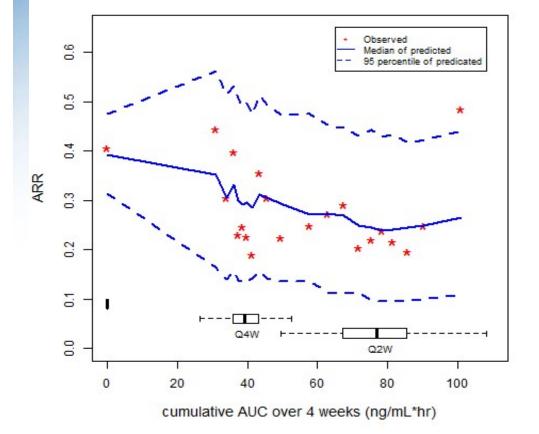
 $\lambda_i \sim \text{gamma}(\alpha, \alpha/\lambda \text{hat}_i)$

$Log(\lambda hat_i) = log(\lambda 0) + b*AUC_i$

Relapse_i = relapse number of subject i λ_i = ARR of subject I λhat = mean of the gamma distribution Duration_i = study duration in years α = shape factor of gamma distribution $\alpha/\lambda hat$ = rate parameter; $\lambda 0$ = baseline ARR AUC_i = cumulative AUC over 4 weeks for subject i b = slope for AUC

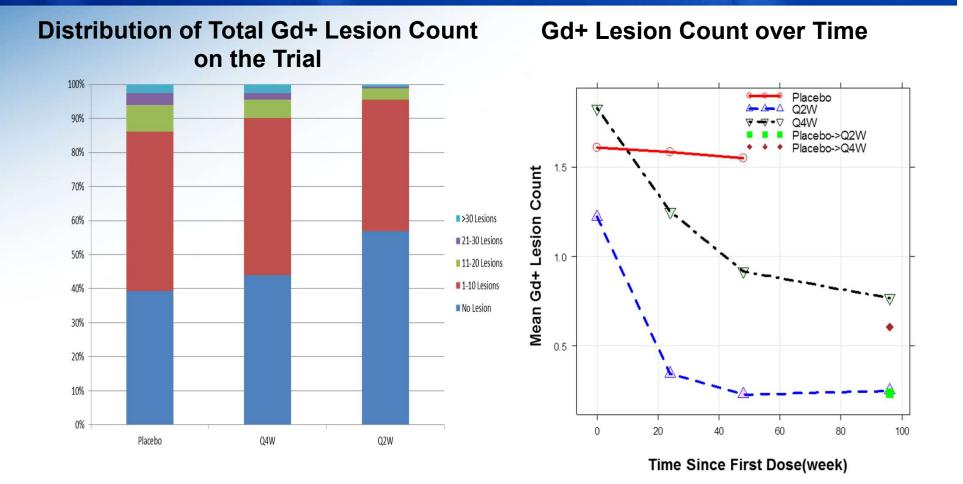
Hu X, et. al., 2017, JCP

Model 1: AUC-ARR Model


Final Model

 $Log(\lambda hat_i) = log(0.391) - 0.00518*AUC_i$

 Greater plegridy exposure of q2W is associated with greater ARR reduction


Hu X, et. al., 2017, JCP

Relationship between AUC and ARR

- Observed data aligned with model predicted data
- Correlation between cumulative monthly AUC and ARR
- Steep ARR decline in the AUC range of Q2W, vs a more flat curve in the AUC range of Q2W

Gd+ Lesion Data Examination

Gd+ = gadolinium-enhancing; Q2W = every 2 weeks; Q4W = every 4 weeks

Hang Y., et. al., 2016, JPKPD

Model 2: AUC-Gd+ Lesion Model

 Mathematical Model (A mixture model with negative binomial distribution)

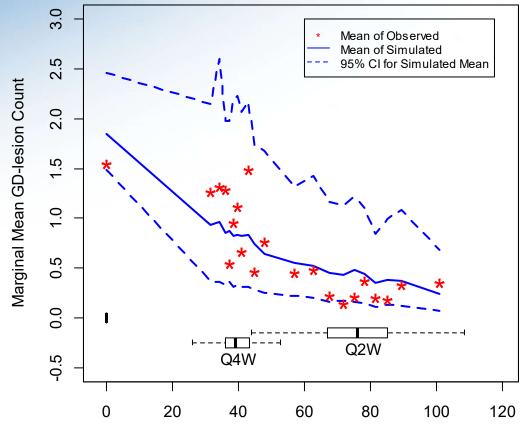
$$\begin{split} \lambda_{i0} &= \lambda_{i0,1} * I\{Y = 1\} + \lambda_{i0,2} * I\{Y = 0\} \\ Y \sim Bernoulli(1,p) \\ \lambda_{i0,1} \sim LN(\mu_1, \omega_1^2), \ \lambda_{i0,2} \sim LN(\mu_2, \omega_2^2), \end{split}$$

$$P(Lesion_{ij} = k) = \frac{\Gamma(k + \frac{1}{r})}{\Gamma(k + 1) * \Gamma(\frac{1}{r})} * \left(\frac{1}{1 + r * \lambda_{ij}}\right)^{\frac{1}{r}} * \left(\frac{\lambda_{ij}}{\lambda_{ij} + \frac{1}{r}}\right)^{\frac{1}{r}}$$

Final Model:

$$\log(\lambda_{ij}) = \log(\lambda_{i0}) - \mathbf{0.0256} * AUC_{ij} * (1 - exp\left(-\frac{0.69}{t_{1/2}} * t_{ij}\right))$$

 λ_{i0} = Lesion count at baseline for subject i


- $\lambda_{i0,1}$ = Baseline lesion count for low activity population;
- $\lambda_{i0,2}$ = Baseline lesion count for high activity population;
- p = Proportion of subjects with lower baseline lesion activity
- Y = low or high activity indicator n
- μ_1 = Mean lesion count for the low activity population
- $\mu_2\text{=}$ Mean lesion count for the high activity population

Lesion_{ij} = Gd+ lesion count for subject i at measurement j; r = over dispersion factor and can take one of the two values; b = slope for AUC

 AUC_{ii} = cumulative AUC over 4 weeks for subject i $t_{1/2}$ = half-life of Gd+ lesion count decline

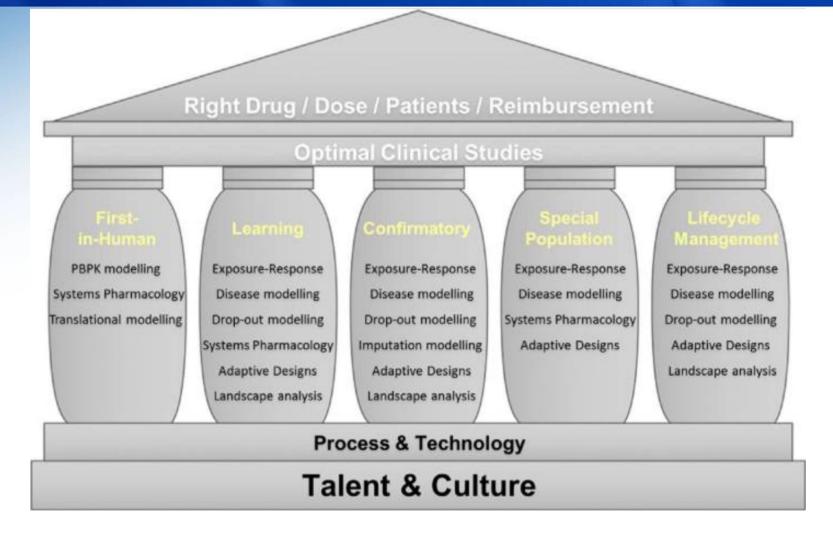
Hang Y., et. al., JPKPD, 2016

Relationship between AUC and ARR

Cumulative AUC Over 4 Weeks (ng/mL*hr)

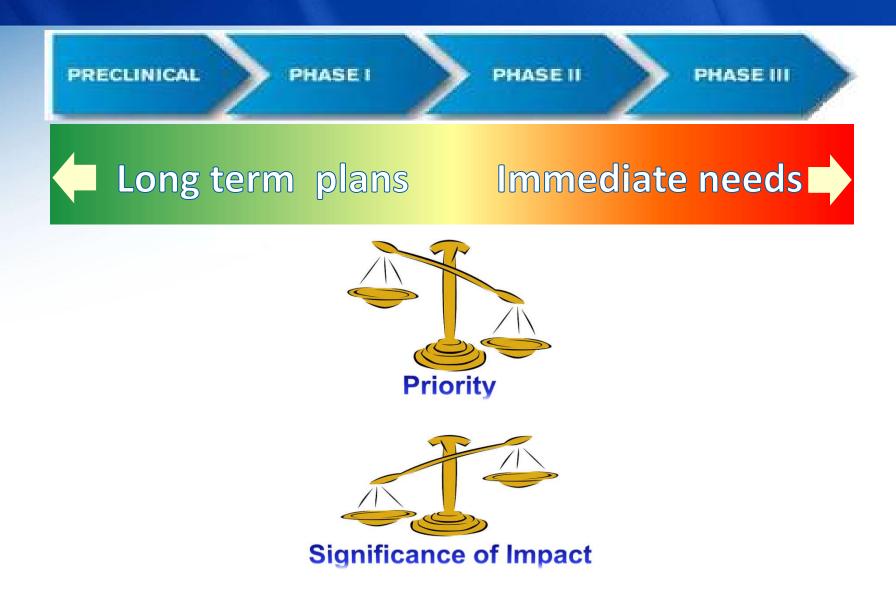
- Observed data aligned with model predicted data
- Correlation between cumulative monthly AUC and Gd+ lesion data
- Steep Gd+ decline in the AUC range of Q4W, vs a more flat curve in the AUC range of Q2W

Plegridy dosing regimen in the label


Conclusion from exposure-response analyses

- Greater plegridy exposure in the Q2W group explained the enhanced efficacy as compared to the Q4W group.
- Q2W was the only recommended dosing regimen

Overall Summary

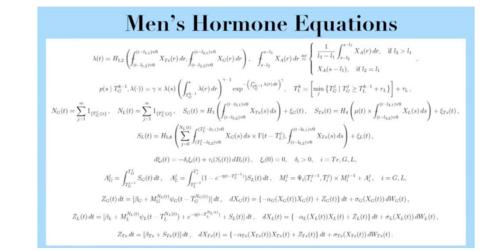

- Quantitative Clinical Pharmacology has been applied to
 - In silico DDI assessment for Drug A provided rationales of DDI study waivers
 - Application of QCP to support Plegridy label and pediatric studies
- Quantitative clinical pharmacology plays a key role in drug development.

Structure of Model Based Drug Development

Kimko H and Pinheiro J. British Journal of Clinical Pharmacology. 2015

General Consideration in Reality

When there's data, there's a best model to describe it


- Weather forecast (with probability)
- Predictive model for successful marriage (≥6 years)*

 $W_{t+1} = a + r_1 W_t + I_{HW}(H_t)$ $H_{t+1} = b + r_2 H_t + I_{WH}(W_t)$

Hormone surge^{*}

Women's Hormone Equations

 $\frac{dx_i}{dt} = x_i \{ K - D(X - M_1 x_i)(X - M_2 x_i) \}, \quad i = 1, \dots, N, \quad \frac{1}{M_1} + \frac{1}{M_2} < 1, \quad X = \sum_{i=1}^N x_j.$

*Clio Cresswell, TEDx Sydney Talk 2014

Thank you!