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Drug-induced liver injury (DILI)
« Arrare but potentially serious idiosyncratic adverse drug

reaction associated with treatment of certain drugs
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Metabolism l
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¢€» MsD e Bjoactivation is only ONE of the several possible causes for DILI



Genotoxicity
« The property of chemical agents that damages the genetic information

within a cell causing mutations, which may lead to cancer.

DNA Damage by Small Organic

A multifactorial process: Molecules/ROS/UV
Non-covalent Covalent
| | DNA nucleophile Base dimers
Intercalation Groove binding  with an electrophile
(Alkylation)

DNA =t bond or C-H

bond with radical
(Oxidation)

« Metabolism is only ONE of the causes for genotoxicity.
«» msp  Drug-induced liver injury and genotoxcity may or may not share the same mechanism.



Available assays for assessing bioactivation potential

 Metabolite Identification studies
- Potential reactive intermediate-related metabolites, toxic metabolites
- Adducts of GSH, N-acetylcysteine, amino acids, drug-proteins, etc.
- In vitro trapping studies (adducts of GSH, cyanide, SCB, DNA bases, DNAs, etc.)

* Covalent protein binding studies using
- in vitro in liver microsomes or hepatocytes ([3H] or [“C])
- in vivo in rats ([*H] or [“C))
- SDS-PAGE analysis of drug-protein adducts ([*°H] or [“C])
-LC/MS analysis of drug-amino acid adducts

* Studies for potential oxidative stress:
- Peroxide formation
- Depletion of intracellular GSH in hepatocytes

* Others
S msp Comet assay (DNA damages)
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Metabolism of drugs to reactive metabolites
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Formation of drug-protein adducts
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* Direct correlation between bioactivation (protein adduct formation) and toxicity is not clear.
<»MsD ° Some toxicity findings were thought to be related to bioactivation of drug molecules.



Formation of potential reactive metabolites in incubations
of compound A with rat and human liver microsomes
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CYP3A4-mediated biotransformation of compound A
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Formation of drug-protein and drug-GSH adducts
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Detectable in LC/MS



Detection of GSH adducts in liver extract of rats dosed with compound B

Expected Metabolites:

Label Metabolite Name Formula Time mJ/z Found mbDa PPM Area Abs Area %

P Parent C16H13F4N5S 8.57 352.1135 -50 -143 36404 00 49048 (1559)

M367b +0O C18H13F4ANSO 7.68 3868.1105 -2¢9 -80 18409.60 2502 (7.88)
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H ¥GSH-2H C26H28F4N206S 6.36 6857.1866 -0D.1 -0.1 113.50 0.15 (0.05) -
: M527 +GSH+O-CB8HS5NS5 (R_3) C20H25F4N307S 576 528.1436 (s =] 1.6 100.30 0.14 (0.04%) :
M525 +GSH-2H+O-C8HS5NS (R_3) C20H23F4N307S 624 526.1241 -30 57 86.30 0.12 (0.09%) .
T M872 +GSH-2H+0O C26H28F4N8O7S 6.11 673.1770 46 -88 2340 0.03 (0.01)
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In vitro trapping studies
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“Hard” vs. “soft” electrophiles/nucleophiles

* Chemical “hardness” and “softness” is a function of polarization.

» Hard electrophiles have high positive charge density at the electrophilic center

(the charge is localized, ex. carbocations) (f' " (sz
cl /C\CI H/C+\H H3C/C+‘\CH3
Harder Softer
(EWG) (EDG)

» Soft electrophiles have low positive charge density at the electrophilic center
(the charge is delocalized) - often as a result of diffuse electron density of T bond

o o
T — .t s

* Hard nucleophiles have high negative charge density (not diffuse and localized charge)

- ___+3oft nucleophiles have less negative charge density (more diffuse and delocalized charge)



“Hard” and “soft” electrophiles and nucleophiles

Electrophiles softest Nucleophiles

Aldehydes, polarized double bonds Thiol groups in cysteinyl protein residues
and glutathione

Epoxides, strained ring lactones,
alkyl sulfates, alkyl halides

Sulfur atoms of methinoyl protein residues

_ Primary and secondary amino protein residues
Arylcarbocations (arginine, lysine and histidine)

Benzylic carbocations, nitrenium ions Amino groups of purine bases (RNA & DNA)

Alkylcarbocations, iminium ions, imines Phosphate oxygen of RNA and DNA

Cyanide
hardest

* Hard electrophiles react with hard nucleophiles
€& msb e Soft electrophiles react with soft nucleophiles



Common in vitro trapping agents
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In vitro trappmg
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Select appropriate trapping agents based on structures of compounds and SAR



In vitro trapping and in vitro covalent protein binding
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Covalent Protein Binding of [?(H]Compounds in Liver Microsomes
of Rats (RLM) and human (HLM) (pmol/mg protein)

R F = :

R/\© /\@ R/\@ R/\CNJ\ R ’N I
~ : ~ :

L X cl i CF3

Compound C Compound D Compound E Compound F Compound G

RLM 1490 841 535 190 111

HLM 3870 1690 911 303 38

--------------------------------

Q’ MSBuel et al. J. Mass Spec. 2003, 38, 211)



In vivo covalent protein binding of [°H]A in rats*

_ Covalent binding (pmol/mg protein)| Drug concentration (uM)
Tissues 2 h 6 h 24 h 2 h 6 h 24 h
Plasma| 0.4 £ 0.6 0] 0.6 24 1.8 1.1 0.1

Liver 2.8+ 1.7 6.7 £ 2.8 8.2+ 0.7 7.0 3.4 0.1
Kidney | 3.2 2.5 51+4.0 1.1 +1.0 10.5 6.6 0.3

*: Male Sprague-Dawley rats were dosed orally with [3H]A at 10 mg/kg (N = 3 each time point).

(Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675)




SDS-PAGE analysis of drug-protein adducts

- covalent binding of [3H]A to proteins in human liver microsomes

120000
100000
(«B)
O
© __ 80000
T E
A==
2o 60000
s =
- O
o
© =~ 40000
=}
(¢+]
o
20000
0

~ 55 KDa
94 KDa 67 KDa 43 KDa 30 KDa
A B c D

N

Slice number

* [PH]A covalently bound to proteins with MW ~ 55KDa.

(Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675)



LC/MS analysis of drug-amino acid adducts
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Studies for potential oxidative stress - formation of peroxides
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* Highly uncoupled P450-medicated oxidations lead to formation of H,O, and superoxide species.

< MSPD..Some other enzymes, €.g, peroxidase can also cause oxidative damage in host tissues.



The substrate specificity of cytochrome P450cam

B
e MSD £ Fhane et af [ Bivore. Med. Chem. & (1098 1500-1508 ”



Table 1. Parameters for the interaction of DOCK-predicted substrates with wild-type P450_,

Compsd K, 3Spin state change MNADH Used® Oy Usad Ha Oy Formed é()rganic products Product formation®
M %o nmol-min~ ' amol ! amolmin ! amol ! %o %o
Camphor 1.1 100 262 250 2 | 26
1 2.8 59 26 32 18 - 55
2 16.0 69 43 40 63 ; 31
3 30 37 41 33 38 : o4
4 NA <4 i 9 100 <1
5 1.4 32 8 8 100 1
[ .4 39 32 28 38 37
7 2.1 i6 37 26 i i } 4
B 09 24 MD* ND Il MDD ND
9 45 33 14 8 72 ; 1
10 0.6 78 49 31 25 ; 20

*Background NADH consumption is 4-6 nmol. min~! nmol !

PThe turnover is the ratio of the area of the organic product peak divided by the area of the starting material plus organic product
after both have been nomalized versus the internal standard peak times =100,

*Compound 8 precipitated at the substrate concentration {1 mM) utilized to measure catalytic tumover. No product was detected
when lower concentrations were used.

* The H,0, formed from decoupled turnover can oxidize (consume) GSH to GSSG !

€ MSD Z. Zhang et al.| Bioorg. Med. Chem. 6 (1998) 15011508 ¢

INVENTING FOR LIFE



P450-mediated quinoid formation - toxicological implications

OH O mTarget organ toxicity
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Metabolite analysis and characterization

A ImL solution contaming 1uM camphor-free
P450.,,, 21uM putidaredoxin reductase, 8§ uM putidare-
doxin, |l uM catalase (to remove any H-O»|formed 1n the
reaction), 1 mM test compound (added in 10 pL etha-
nol), and 5 mM NADH was incubated at 25°C for 1.5h.

Catalase catalyzes the following reaction:
2H,0,—-2H,0+0,

€< msp Z. Zhang et al.|Bioorg. Med. Chem. 6 (1998) 15011308 7
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Radical Rebound Mechanism in Cytochrome P-450-catalyzed
Hydroxylation of the Multifaceted Radical Clocks a- and B-Thujone*

Xiang He and Paul R. Ortiz de Montellano:

From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280

Enzyme Incubations—Unless otherwise indicated, the buffer was 100

mMm KH,PO,, pH 7.4. In the case of P-450

cann?

the incubations contained

P-450___ (0.5 um), Pd (5 uM), Pd reductase (5 uM), a-thujone (2000 puM),

superoxide dismutase (2 uM), and catalase (100 pg/ml)

buffer. The reaction was inifiated by the addifion of N

Catalase : superoxide

in the reaction
DH (2000 pM).

— +
2 H202 — 2 HZO + 02 20,7 + 2H dismutase

INVENTING FOR LIFE

02 —+ H202

28



Comparison of formation of H,O, in Salmonella in the
presence or absence of compound H (Ames +) or GSH
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0 —
OopM 50uM S50puM+5mmM GSH 5mM S5SmM+5mM GSH

Concentration of Compound D

*: Salmonella was incubated in the presence or absence of compound H (50 uM or 5 mM)
or GSH (5 mM) for 60 min prior to the H,O, assay.

* The presence of compound H in Salmonella did not increase the formation
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Studies for potential oxidative stress
— depletion of intracellular GSH in hepatocytes
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Effect of compound A and its quinone-like metabolite
M12 on the ratio of GSH/GSSG in rat hepatocytes
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5 min

(Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675)
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Detection of adenine adducts A1-A5 of compound A
in LM and CYP3A4 in the presence of adenine)

100 . .
1 Mouse liver microsomes
s
A1
O T T T T T T T T
0.00 1.00 2.00 3.00 4.00 5. oo 7.00 8.00 9.00
100 7
| Monkey liver microsomes
= A3
o
0 T T T T T T \/L T /\ T T T T T T
0.00 1.00 2.00 3.00 4.00 5 00 7.00 8.00 9.00
100 . . Al A4
] Human liver microsomes A2
L ] A3
%000 1.00 200 3.00 400 5.00 6.00 7.00 8.00 9.00
100 Al A4 A5
1 Human CYP3A4 A3
<] A2 j\
O T T T T T T — A/\ A T T T T T T
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Time (min)

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368)



Structures of adenine adducts A1-A5 of compound A
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« The 1,4-benzoxathiin-6-ol ring is subject to bioactivation
e MSD (Y. Li, Chem. Res. Toxicol. 2012; 25:2368)



Proposed mechanism for the formation of the adenine adduct Al
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Proposed mechanism for the formation of the adenine adducts A2-A5
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e MSD (Y. Li, Chem. Res. Toxicol. 2012; 25:2368)



Fluorescence microscopy photographs (Comet assay) of

human hepatocytes treated Wlth compounds for 90 min
A) DMSO (0.1%)

D) Compound A (6.2 uM) E) Compound A (12.5 uM) F) Compound A (25 uM)

* Compound A caused DNA damages in the concentration range of 3.1 and 25 uM)

€ MSD
INVENTING FOR LI/ (Y Li, Chem. Res. Toxicol. 2012; 252368)




Available assays for assessing bioactivation potential

 Metabolite Identification studies
- Potential reactive intermediate-related metabolites, toxic metabolites
- Adducts of GSH, N-acetylcysteine, amino acids, drug-proteins, etc.
- In vitro trapping studies (adducts of GSH, cyanide, SCB, DNA bases, DNAs, etc.)
* Covalent protein binding studies using
- in vitro in liver microsomes or hepatocytes ([>H] or [“C])
- in vivo in rats ([>*H] or [“C])
- SDS-PAGE analysis of drug-protein adducts ([*H] or [“C])
-LC/MS analysis of drug-amino acid adducts

* Studies for potential oxidative stress:
- Peroxide formation
- Depletion of intracellular GSH in hepatocytes

* Others
S msp Comet assay (DNA damages)



Approaches to select assays to minimize bioactivation

Positive in vitro and in vivo DILI signals

. Relevance to DILI
Transporters? 2> i O&Nechanlsm based?
@@@
I SAR? [3H] or [**C] CB in rats in vivo
L ) (quantitative; reflect burden)
Oxidative stress <—> Metabolism/ Drug-aa, adducts in rat liver
(H,O, measure, Bioactivation (qualitative; structural info)
GSH/GSSG) — GSH adducts etc. in rat liver
Chemically reactive metabolites ------ (qualitative; structural info)
: . MetlID data
Drug-aa,-protein adducts in vivo

/ [3H] or [**C] CB in vitro
~— Drug-aa, adducts in vitro
—____ Invitro trapping (GSH, etc.
~_ | pping ( )
w MetID data Y

- - - Y -
< Bioactivation and structural info
<wmsp concerning reactive metabolites

Chemically reactive metabolites ------
Drug-aa,-protein adducts in vitro
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Closing remarks

Some drugs with DILI signals have generated appreciable amount of reactive metabolites.
Some other drugs that form a lot of reactive metabolites do not have obvious DILI signals.
Some drugs with DILI signals are not metabolized to reactive metabolites.

Bioactivation of drug molecules (covalent binding to proteins) is only one of the possible
causes for the DILI, and may or may not play a major role for the observed liver toxicity.
The relevance between protein targets of reactive metabolites and the

toxicity is not well understood. Structural modification based on metabolism

data is a valuable approach to minimize bioactivation of drug candidates, but

not predictive to toxicity.

Several drug metabolism assays are available for assessing bioactivation potential of drug

molecules. Study designs should be hypothesis-driven and should be based on the specific

properties of compounds, including mechanism of action.
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