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Drug-induced liver injury (DILI)  
• A rare but potentially serious idiosyncratic adverse drug 

    reaction associated with treatment of certain drugs 

• Bioactivation is only ONE of  the several possible causes for DILI 
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Genotoxicity 
• The property of chemical agents that damages the genetic information 

within a cell causing mutations, which may lead to cancer.  
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• Drug-induced liver injury and genotoxcity may or may not share the same mechanism. 

• Metabolism is only ONE of  the causes for genotoxicity. 

A multifactorial process: 
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Available assays for assessing bioactivation potential 

• Metabolite Identification studies 

     - Potential reactive intermediate-related metabolites, toxic metabolites 

     - Adducts of GSH, N-acetylcysteine, amino acids, drug-proteins, etc. 

     - In vitro trapping studies (adducts of GSH, cyanide, SCB, DNA bases, DNAs, etc.)    

 •  Covalent protein binding studies using 

       - in vitro in liver microsomes or hepatocytes ([3H] or [14C]) 

       - in vivo in rats ([3H] or [14C]) 

       - SDS-PAGE analysis of drug-protein adducts ([3H] or [14C]) 

        -LC/MS analysis of drug-amino acid adducts 

•  Studies for potential oxidative stress: 

       -  Peroxide formation 

       -  Depletion of intracellular GSH in hepatocytes 

5 

• Others  

       - Comet assay (DNA damages) 
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Metabolism of drugs to reactive metabolites 

R [O] R

O

O

R [O]
R

O

OH

NR [O] NR



8 

O

O

S Protein S Protein
O

OH

S Protein
OH

OH

S Protein

O
OH

S Protein

H2O

S Protein

Formation of drug-protein adducts 

Idyosyncratic drug reactions Tissue damages

• Direct correlation between bioactivation (protein adduct formation) and toxicity is not clear. 

•  Some toxicity findings were thought to be related to bioactivation of drug molecules. 
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Formation of potential reactive metabolites in incubations 

of compound A with rat and human liver microsomes  

(Z. Zhang, Chem. Res. Toxicol. 2005, 18, 675) • Three potential reactive metabolite-related species were detected. 9 
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CYP3A4-mediated biotransformation of compound A 

(Z. Zhang, Chem. Res. Toxicol. 2005, 18, 675) 
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Detection of GSH adducts in liver extract of rats dosed with compound B 
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“Hard” vs. “soft” electrophiles/nucleophiles 

• Chemical “hardness” and “softness” is a function of polarization. 

 

• Hard electrophiles have high positive charge density at the electrophilic center  

  (the charge is localized, ex. carbocations) 
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• Hard nucleophiles have high negative charge density (not diffuse and localized charge) 
 
• Soft nucleophiles have less negative charge density (more diffuse and delocalized charge)   

• Soft electrophiles have low positive charge density at the electrophilic center  

  (the charge is delocalized) – often as a result of diffuse electron density of p bond 
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Electrophiles 
Aldehydes, polarized double bonds 

 

Epoxides, strained ring lactones,  

alkyl sulfates, alkyl halides 

 

Arylcarbocations 

 

Benzylic carbocations, nitrenium ions 

 

Alkylcarbocations, iminium ions, imines 

softest 

hardest 

Thiol groups in cysteinyl protein residues 

and glutathione 

 

Sulfur atoms of methinoyl protein residues 

 

Primary and secondary amino protein residues  

(arginine, lysine and histidine) 

 

Amino groups of purine bases (RNA & DNA) 

 

Phosphate oxygen of RNA and DNA 

 

Cyanide 

Nucleophiles 

• Hard electrophiles react with hard nucleophiles 
• Soft electrophiles react with soft nucleophiles 

“Hard” and “soft” electrophiles and nucleophiles  



Common in vitro trapping agents 
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In vitro trapping 

• Select appropriate trapping agents based on structures of compounds and SAR 

Detection by LC/MS & NMR 
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In vitro trapping and in vitro covalent protein binding 

1490 pmol/mg protein 

in rat liver microsomes 

841 pmol/mg protein 

in rat liver microsomes  

(Samuel et al. J. Mass Spec. 2003, 38, 211) 
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RLM         1490            841                 535               190                 111 

 

HLM         3870           1690                911                303                  88 

Covalent Protein Binding of [3H]Compounds in Liver Microsomes  
of Rats (RLM) and human (HLM) (pmol/mg protein) 

(Samuel et al. J. Mass Spec. 2003, 38, 211) 
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In vivo covalent protein binding of [3H]A in rats* 

*: Male Sprague-Dawley rats were dosed orally with [3H]A at 10 mg/kg (N = 3 each time point). 

2 h 6 h 24 h 2 h 6 h 24 h

Plasma 0.4 ± 0.6 0 0.6 ± 2.4 1.8 1.1 0.1

Liver 2.8 ± 1.7 6.7 ± 2.8 8.2 ± 0.7 7.0 3.4 0.1

Kidney 3.2 ± 2.5 5.1 ± 4.0 1.1 ± 1.0 10.5 6.6 0.3

Covalent binding (pmol/mg protein) Drug concentration (mM)
Tissues

(Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675) 



SDS-PAGE analysis of drug-protein adducts  

- covalent binding of [3H]A to proteins in human liver microsomes 

• [3H]A covalently bound to proteins with MW ~ 55KDa. 
21 (Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675) 
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LC/MS analysis of drug-amino acid adducts 
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Drug-amino acid adducts 
(detected by LC/MS) 

Drug-protein adducts 
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Studies for potential oxidative stress - formation of peroxides 

• Highly uncoupled P450-medicated oxidations lead to formation of H2O2 and superoxide species. 

 

• Some other enzymes, e.g, peroxidase can also cause oxidative damage in host tissues. 
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The substrate specificity of cytochrome P450cam   
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• The H2O2 formed from decoupled turnover can oxidize (consume) GSH to GSSG ! 



P450-mediated quinoid formation - toxicological implications 
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      H2O2 and ROS: 
• From decoupled P450 rxns 
• From bioactivation 
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Catalase catalyzes the following reaction: 

2 H2O2 → 2 H2O + O2 
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Catalase : 

2 H2O2 → 2 H2O + O2 



Comparison of formation of H2O2 in Salmonella in the 

presence or absence of compound H (Ames +) or GSH 
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• The presence of compound H in Salmonella did not increase the formation 

of H2O2 compared to the controls.    

*: Salmonella was incubated in the presence or absence of compound H (50 µM or 5 mM) 

    or GSH (5 mM) for 60 min prior to the H2O2 assay.  
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Concentration of Compound D 
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Studies for potential oxidative stress  

– depletion of intracellular GSH in hepatocytes 



• Cpd A and its hydroquinone metabolite M12 did not cause depletion of intracellular GSH level. 

Solvent control 
+ 30 µM menadione 
+ 10 µM cpd A 
+ 50 µM cpd A 

 
+ 100 µM cpd A 
+ 300 µM cpd A 
+ 10 µM M12 
+ 50 µM M12 
+ 100 µM M12 
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Effect of compound A and its quinone-like metabolite  

 M12 on the ratio of GSH/GSSG in rat hepatocytes 
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31 (Zhang, et al., Chem. Res. Toxicol. 2005, 18, 675) 



32 

A1

A2
A3

A4

A5

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

A1

A3
A4

A5

A2

A1

A3

A4 A5

A2

A3

A4 A5

A2

A1

Mouse liver microsomes

Monkey liver microsomes

Human liver microsomes

Human CYP3A4

Time (min)

0.00

0.00

0.00

0.00

A1

A2
A3

A4

A5

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

%

0

100

A1

A3
A4

A5

A2

A1

A3

A4 A5

A2

A3

A4 A5

A2

A1

Mouse liver microsomes

Monkey liver microsomes

Human liver microsomes

Human CYP3A4

Time (min)

0.00

0.00

0.00

0.00

Detection of adenine adducts A1-A5 of compound A 
 in LM and CYP3A4 in the presence of adenine) 

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368) 
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Structures of adenine adducts A1-A5 of compound A 

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368) 

• The 1,4-benzoxathiin-6-ol ring is subject to bioactivation 
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Proposed mechanism for the formation of the adenine adduct A1 

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368) 
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Proposed mechanism for the formation of the adenine adducts A2-A5 

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368) 



A) DMSO (0.1%)  B) Clofibric acid (2 μM)  

D) Compound A (6.2 μM) 

C) Compound A (3.1 μM) 

Fluorescence microscopy photographs (Comet assay) of 

 human hepatocytes treated with compounds for 90 min 

E) Compound A (12.5 μM) F) Compound A (25 μM) 

(Y. Li, Chem. Res. Toxicol. 2012; 25:2368) 

•Compound A caused DNA damages in the concentration range of 3.1 and 25 μM)  
36 



Available assays for assessing bioactivation potential 

• Metabolite Identification studies 

     - Potential reactive intermediate-related metabolites, toxic metabolites 
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• Others  

       - Comet assay (DNA damages) 
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Positive in vitro and in vivo DILI signals 

Chemically reactive metabolites ------ 

Drug-aa1-protein adducts in vivo 

GSH adducts etc. in rat liver 
(qualitative; structural info) 

MetID data 

Relevance to DILI 

Drug-aa1 adducts in rat liver 

(qualitative; structural info) 

In vitro trapping (GSH, etc.)   

[3H] or [14C] CB in vitro 

[3H] or [14C] CB in rats in vivo 
(quantitative; reflect burden) 

Drug-aa1 adducts in vitro 

MetID data 

Approaches to select assays to minimize bioactivation 

Mechanism based? 

Metabolism/ 

Bioactivation 

SAR 

Transporters? 

Chemically reactive metabolites ------ 

Drug-aa1-protein adducts in vitro 

SAR? 

Bioactivation and structural info 

concerning reactive metabolites 38 

Oxidative stress 

(H2O2 measure, 

  GSH/GSSG) 



Closing remarks 

 

• Some drugs with DILI signals have generated appreciable amount of reactive metabolites. 

• Some other drugs that form a lot of reactive metabolites do not have obvious DILI signals. 

•  Some drugs with DILI signals are not metabolized to reactive metabolites. 

• Bioactivation of drug molecules (covalent binding to proteins) is only one of the possible 

      causes for the DILI, and may or may not play a major role for the observed liver toxicity. 

• The relevance between protein targets of reactive metabolites and the 

     toxicity is not well understood. Structural modification based on metabolism 

     data is a valuable approach to minimize bioactivation of drug candidates, but 

     not predictive to toxicity. 

• Several drug metabolism assays are available for assessing bioactivation potential of drug 

     molecules. Study designs should be hypothesis-driven and should be based on the specific 

     properties of compounds, including mechanism of action. 
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