Bioanalysis of Protein Therapeutics and Antibody-Drug Conjugates by LC-MS 液质联用在蛋白制品和抗体-药物偶合药物生物分析中的应用

Hao Jiang, PhD

Bristol-Myers Squibb, Princeton, NJ, USA

Dian Su, PhD

Genentech/Roche, San Francisco, CA, USA

Jian Wang, PhD

Bristol-Myers Squibb, Princeton, NJ, USA

2018 Nanjing International DMPK Symposium – Workshop 2018 南京国际药代会议学习班 June 29, 2018 / 中国·南京

1. Introduction: Current status, Challenges and Solutions

概述:业界现状,挑战,解决方案

Hao Jiang, PhD

Bristol-Myers Squibb, Princeton, NJ, USA

Therapeutic Antibody and Proteins Market

Antibody and fragments

Glycoengineered Abs

N-glycans

(Fab)

H 3 H 3

N-glycans

(Fc) -Asn²⁹⁷-

Journal of Controlled Release, 268: 323

https://www.creativebiolabs.net/antibody -glycoengineering.htm

· Fc: glycosylation: 2-3 % of the IgG mass

· 20 % IgGs: additional glycosylation site in the Fab

· Highly dependant to production systems, clones...

· Impact on immunogenicity, effector functions...

& many more

Fusion Proteins

Bispecific Abs

FEBS Letters, 2010, 584: 2670

Drug Discovery Today, 2015, 20: 7

Antibody Drug Conjugates

Probody and Conjugates

Complexity of Protein Mass Spectra

The First Scientist to Apply LC-MS for Protein Analysis

John Bennett Fenn 2002 Nobel Prize in Chemistry

Born	June 15, 1917 New York City, New York, U.S.
Died	December 10, 2010 (aged 93) Richmond, Virginia, U.S.
Residence	United States
Nationality	United States
Alma mater	Berea College Yale University
Known for	Electrospray ionization
Awards	Nobel Prize in Chemistry (2002)
Scientif	ic career
Fields	Chemistry
Institutions	Princeton University Yale University Virginia Commonwealth University

Electrospray Ionization (ESI)

- Introduced by Chapman in 1930
- John Fenn applied it to study large biomolecules

Publication Trend of LC-MS Protein Analysis

Source: www.ncbi.nlm.nih.gov/pubmed/

LC-MS Applications and Bioanalysis

- Analytics of protein therapeutics in drug discovery and development is quite different from small molecules
 - ✓ Chemistry, Manufacturing & Controls (CMC)
 - ✓ Bioanalysis (pharmacokinetics, immunogenicity, biomarkers)
- The quality of bioanalytical work is critical to pharmacokinetic (PK) and pharmacodynamics (PD) assessments to guide drug development
 - ✓ Biological samples (plasma, serum, tissues)
 - \checkmark Amount of endogenous proteins (70 mg/mL) >> analyte proteins (10⁻⁹ mg/mL)

Current Status in Bioanalysis

Bioanalytical technologies

- ✓ Ligand binding assays (LBA)
- ✓ LC-MS (including hybrid LC-MS)
- Assay sensitivity
 - ✓ Low pg/mL level, assay dependent
- Bioanalytical applications
 - ✓ PK (LLOQ \ge 500 ng/mL)
 - \checkmark Immunogenicity (LOD \geq 100 ng/mL of control)
 - ✓ Biomarker (LLOQ 1 pg/mL 10 ng/mL, biomarker dependent)

LC-MS Workflow for Protein Bioanalysis

💪 SIL-peptide IS

14

LBA vs. LC-MS in Assay Format

15

LBA vs. LC-MS in Assay Features

Feature	LBA	LC-MS
Specificity/selectivity	Highly reagent dependent; limitation in differentiating proteins with minor differences	Besides reagents, LC and MS provide additional two levels of specificity/selectivity
Sensitivity	pg/mL and above; majorly dependent upon binding affinity	pg/mL and above depending upon molecular weights; 10-100 times less than LBA
Calibration curve/range	4 Parameter Logistic (4PL) or 5PL; range 10-10 ³ folds	Linear or quadratic; Wider dynamic range 10 ² -10 ⁴ folds
Critical reagents	Need Ab pairs for capture and detection; need to label both capture or detection Ab	Need only capture Ab; biotin labeling
Assay throughput	4-8 hours/run (1-2 plates)	10-20 hours/run (1-2 plates)
Measuring "active" or "total"	Either one	Either one

16

LC-MS Assay Provides Three-Level Specificity

•Level 1: Sample pretreatment

- \checkmark Harsh conditions (protein precipitation, solid phase extraction)
- ✓ Mild conditions (immunocapture, size exclusion)
- \checkmark Combinations (H \times H, M \times M, M \times H)
- ✓ Post-extraction treatments (reduction, derivatization, proteolysis, deglycosylation)

Level 2: Liquid chromatography

- \checkmark Variety of column chemistry (RP, HILIC, SEC, IPC, SCX)
- ✓ 2 dimension separations (RP x RP, SCX x RP, RP x HILIC, RP x IPC)
- •Level 3: Mass spectrometry
 - ✓ QQQ, Q-TOF, Q-orbitrap,
 - \checkmark Ion Mobility (SelexION/DMS), additional dimension ion separation

17

LC-MS Assay Has Unique Features

1) Good specificity/selectivity

Differentiate protein isoforms, modifications, substitutions, isobaric interferences

2) Multiplexing capacity

Drug(s), anti-drug antibody (ADA), disease targets

3) Flexibility

Curve range, sample volume, selection of surrogate peptides

4) Internal standardization

Stable Isotopically Labeled (SIL)-protein > SIL-flanking-peptide > SIL-peptide > analogues

- 5) Short lead time for method development
 - 2 6 weeks if no specific reagent is needed
- 6) Less dependent on reagents for selectivity

Good selectivity from coupling LC and MS

Challenges of LC-MS in Protein Bioanalysis

1) Less sensitive than LBA, but generally sufficient for PK bioanalysis

- ✓ LLOQ of 5 ng/mL (30 pM, 25 μ L sample) for mAb¹
- ✓ LLOQ of 0.78 pg/mL (0.05 pM, 500 µL sample) for IL-21²
- 2) Requires proteolysis for large proteins (MW > 10 kDa)
 - ✓ Enzymatic digestion
 - ✓ Acid hydrolysis
- 3) Sometimes need immunocapture for analyzing active analytes
 - ✓ Protein A/G
 - ✓ Anti-human Fc
 - ✓ Anti-light chain
 - ✓ Anti-Idiotypic (blocker and non-blocker)

2. Method Development and Optimization

方法的建立和优化

Hao Jiang, PhD

Bristol-Myers Squibb, Princeton, NJ, USA

Strategy for Method Development

Find Surrogate Peptides

Biological Sample Pretreatment

LC-MS Optimization

- In-silico digestion
- In-silico specificity (Blastp)
- Experimental confirmation
- 1) DDA/MS2 or Skyline MRM screening
- 2) Specificity (LLOQ/blank ratio)
- 3) MS optimization (DP, CE)
- 4) Sensitivity (S/N)
- 5) Stability (sequences not containing M, NG, DG)

Remove endogenous proteins

- Know the analyte(s)
- 1) Small (<10 kDa) or large protein
- 2) PEGylated or chemical modified
- 3) Measure "active" or "total" form
- 4) Capture Ab availability
- IC for "active" form
- IC for "total" form
- PPT for "total" form

Protein analyte hydrolysis

- trypsin, chemotrypsin, Lys-C, formic acid, etc.
- Optimization: pH, temperature, duration, enzyme: substrate ratio

<u>LC</u>

- Column chemistry (C18), dimension, temperature, flowrate
- Mobile phases (acetonitrile/water/FA) and gradient
- Micro- or nano-LC

MS instrument

- QQQ, HRMS (orbitrap, TOF)
- MS optimization (ion-source parameters, DP, CE, mass resolution)

Surrogate Peptide Selection and Optimization (Skyline)

Surrogate Peptide Selection and Optimization (Skyline), Cont'd

Bristol-Myers Squibb

Protein Precipitation (PPT, Lowest Specificity)

- IC-free
- "Total" analyte assay
- Simple and cost-effective
- Proteins are precipitated with water-miscible organic solvents (e.g., ACN, MeOH, IPA).
- The supernatant and the precipitate are separated by centrifugation.
 - Organic soluble proteins in supernatant, e.g. PEGylated proteins; need to dry down prior to digestion
 - Large proteins in protein pellet, e.g., mAbs; need to be fully resuspended in digestion buffer prior to digestion

Jiang H et al., Anal Chem. **2013**, 85:9859

Courtesy of Naiyu Zheng

Solid Phase Extraction (SPE, Higher Specificity)

- "Total" assay without IC at the beginning
- "Active" assay with anti-Id IC at the beginning
- Fully automated process
- Extensive effort on method development
- Recovery may be low
- For the extraction of peptides or digested samples based on C18, C8, C4, or ion exchange
 - Reversed-phase (RP)
 - Strong-cation exchange (SCX)
 - Mix cation mode (MCX)

Immunocapture (IC, Highest Specificity)

- Bead- or cartridge-based
- Extracted samples are clean
- Good assay sensitivity
- Reagent-dependent
- Capture antibody immobilized based on biotin-streptavidin binding or direct binding
- Fully automated process
- Analyte dependent capture Ab
 - Generic capture Ab (Protein A/G, anti-Fc)
 - Specific capture Ab (target protein, anti-Id, anti-framework)
- One capture Ab

Abundanc

Procedure:

- 1. Immobilize capture Ab or protein on cartridges/beads
- 2. Immunocapture the analyte
- 3. Wash & repeat
- 4. Elute analyte
- 5. Trypsin digestion
- 6. LC-MS analysis

Courtesy of Naiyu Zheng

"Ligand binding assay (LBA) is simple, sensitive, and high throughput, and LC-MS is a powerful analytical tool to provide a better assay specificity at molecular structure level ."

Application Case Studies

- 1. Two mAbs in non-clinical toxicokinetic (TK) study
- 2. PEG-dAb in clinical pharmacokinetic (PK) study
- 3. PEG-protein in-vivo biotransformation (BTX)
- 4. Neutralizing antibody (NAb) assay development

Case Study #1: Two mAbs in Non-Clinical Toxicokinetic (TK) Study

IV infusion to monkeys once weekly for 4 weeks of mAb-A, mAb-B or coadministration

Immunocapture-Free Assay - "Total" Drug Assay

Jiang H, Anal. Chem. 2013, 85: 9859

Surrogate Peptides for LC-MS Quantitation

1166 30

Sample Pretreatment and LC-MS Analysis

- Precipitation with methanol (25 µL serum sample)
- Reduction and alkylation (dithiothreitol and iodoacetamide)
- Internal standardization (with SIL-peptides)
- Trypsin digestion (50°C for 30 min)
- Stop digestion (with 10% formic acid)
- LC-MS/MS analysis
 - $\checkmark\,$ 2-µL injection on uHPLC (120 µL of processed samples)
 - $\checkmark\,$ C_{18} column with 0.1% formic acid in acetonitrile/water
 - $\checkmark\,$ Multiple reaction monitoring (MRM) detection
 - $\checkmark~10$ min run time for each sample

Fully Validated LC-MS/MS Assay

- Accuracy and precision runs (n = 3)
- Sensitivity (10 lots of serum)
- Specificity (10 lots of serum, co-dosed drug, Anti-Drug Antibodies (ADA))
- Stability (RT, FT, LTS, RI, PSS)
- Robustness (recovery/matrix effect, run size, autosampler carryover)
- Dilution linearity
- Cross validation between LBA and LC-MS (QCs and study samples)

Good LC-MS Assay Performance

Surrogate Peptide	Function/Location	Cal. Curve	Regression
<u>GLEW</u> IGEINHR	Quantitation, CDR (mAb-A)	5 – 500 µg/mL	Linear, 1/x ²
<u>ASGI</u> XXXXXMHWVR	Quantitation, CDR (mAb-B)	25 – 500 µg/mL	Linear, 1/x ²
<u>VVSV</u> LTVLHQDWLNGK	Confirmatory, Fc (both)	5 – 500 µg/mL	Linear, 1/x ²
<u>TVAA</u> PSVFIFPPSDEQLK	Confirmatory, LC (both)	25 – 500 μg/mL	Linear, 1/x ²

Surrogate Peptide	%Dev	Between-Run (%CV)	Within-Run (%CV)
<u>GLEW</u> IGEINHR	≤ ±2.8	≤ 3.6	≤ 3.8
<u>ASGI</u> XXXXXMHWVR	≤ ±4.9	≤ 2.1	≤ 6.0
<u>VVSV</u> LTVLHQDWLNGK	≤ ±4.2	≤ 7.5	≤ 9.5
<u>TVAA</u> PSVFIFPPSDEQLK	≤ ±3.2	≤ 2.8	≤ 3.0

- mAb-A and mAb-B in monkey sera were simultaneously quantitated by LC-MS
- 15/20% acceptance criteria
- 'X" stands for BMS proprietary info

No Interference from Co-dosed Drug and ADA

	Spiked with	Spiked with								
	2000 µg/mL	4000 μg/mL								
	mAb-B	mAb-A				GLEW			VVSV	
Analyte	GLEW	ASGI	ADA clone ID	LLOQ (µg/mL)	Mean	%Dev	%CV	Mean	%Dev	%CV
Nominal (µg/mL)	15.00	60.00	1	5	4.7	-5.3	1.2	5.6	11.3	6.3
Measured (µg/mL)	14.40	56.47	2	5	4.8	-4.7	4.4	5.6	11.3	3.7
	14.78	57.56	3	5	4.4	-12.7	5.8	5.3	6.0	3.3
	15.91	60.04	4	5	4.9	-1.3	1.2	5.6	12.0	6.2
Mean (µg/mL)	15.03	58.02	5	5	4.9	-2.7	6.3	5.6	11.3	2.7
%Dev	0.2	-3.3	6	5	5.1	2.7	13.0	6.1	21.3	16.9
%CV	5.2	3.2	7	5	5.0	0.0	6.9	5.7	14.7	4.4
Nominal (µg/mL)	400.00	400.00	8	5	4.8	-4.0	0.0	5.5	10.7	2.8
Measured (µg/mL)	407.50	377.87	9	5	5.0	0.7	4.6	5.5	10.7	6.8
	405.29	387.13	10	5	5.2	3.3	4.0	5.7	13.3	6.2
	389.42	376.07	11	5	4.9	-2.7	4.3	5.6	12.0	5.4
Mean(µg/mL)	400.74	380.36	12	5	4.9	-2.7	4.7	5.5	9.3	4.2
%Dev	0.2	-4.9	13	5	4.7	-6.7	2.5	5.5	9.3	2.8
%CV	2.5	1.6								

Comparable PK Profiles from LC-MS and LBA

Mean Conc.(µg/mL)

Time (h)

No observable soluble target or ADA interference with LBA

Jiang H, Anal. Chem. 2013, 85: 9859

Good Correlation of PK Data from LC-MS vs. LBA

Jiang H, Anal. Chem. 2013, 85: 9859

Case Study #2: PEG-dAb in clinical pharmacokinetic (PK) study

- 12 kDa domain Ab with 40 kDa PEG
- Needed a more sensitive assay than the LBA to cover PK profile at the lowest dose

LLOQ 10 ng/mL

Gong C, Bioanalysis. 2014, 6:2371

Comparable Data of LC-MS vs. LBA

Gong C, Bioanalysis. 2014, 6:2371

Case Study #3: PEG-Protein In-Vivo Biotransformation (BTX)

D/P cleavage by formic acid hydrolysis			In-vivo C10-cl (inactive	ipping e)
	GILAPQPPDV	GSSDPLSMVG	PSQGRSPSYA	S
	AHGLPLHLPG	NKSPHRDPAP	RGPARFLPLP	GLPPALPEPP
	SRFLCQRPDG	ALYGSLHFDP	EACSFRELLL	EDGYNVYQSE
	AHLEIREDGT	VGGAADQSPE	SLLQLKALKP	GVIQILGVKT
	AdPKE-Linker-	PIPDSSPLL	QFGGQVRQRY	LYTDDAQQTE

Biotransformation Assay

Fung E, et al, Bioanalysis, 2014, 6: 2985

Case Study #4: Neutralizing Antibody (NAb) Assay Development

- Cell-based neutralizing antibody (NAb) assay is to detect ADAs that can neutralize drug activity.
- The assay is interfered by the drug and endogenous serum factors.
- Bead extraction with acid dissociation (BEAD) refers to the extraction of ADA from human serum by the beads coated with biotin-drug, after the ADA is dissociated from drug-ADA complex with acid.
- LC-MS assay to evaluate if the drug and serum factors have been removed prior to the downstream cell-based assay

LC-MS Analytes in the BEAD Elutes

Jiang H, Anal. Chem. 2014, 86: 2673

42

Summary

- LC-MS is a powerful bioanalytical tool for biologics development due to its good specificity, multiplexing capacity, and flexibility.
- The LC-MS assay sensitivity is continuously being improved by advancement of LC and MS technologies and innovative applications in hybrid LC-MS.
- Most importantly, it can be employed to overcome the technical issues observed in the LBA.
 - High LBA detection background (case study #1)
 - Poor LBA assay sensitivity (case study #2)
 - LBA not able to differentiate parent drug and its metabolite (case study #3)
 - LBA not able to detect residual drug (case study #4)

3. Strategy and applications of LC-MS in immunogenicity assessment

液质联用在免疫原性评估中的应用

Hao Jiang, PhD

Bristol-Myers Squibb, Princeton, NJ, USA

Immunogenicity Testing

- Based on FDA guidance¹, immunogenicity tests should be designed to detect ADA that could mediate unwanted biological or physiological consequences.
 - > Screening assays are used to detect all antibodies that bind to the therapeutic protein product.
 - > The specificity is established using confirmatory assays.
 - > Further characterized using tittering and neutralization assays.
- The sponsor should implement preliminary validated assays early, before and during phase 1, and obtain data in real time.
- Information on immune responses observed during clinical trials is crucial and should be included in the prescribing information.
- Therefore, the development of valid, sensitive, specific, and selective assays to measure ADA responses is a key aspect of therapeutic protein product development.

¹Assay Development and Validation for Immunogenicity Testing of Therapeutic Protein Products, Guidance for Industry (draft guidance)", by US FDA/CDER, CBER, CDRH, April 2016

Bridging LBA and LC-MS Assay Formats

Bridging LBA

Immunocapture LCMS (direct format)

• Jiang H, et al. Anal Chem, 2014, 86, 2673–2680

- Xu W, et al. J Immunol Methods, 2015, 416, 94-104
- Chen L, et al. J Immunol Res, 2016, Article ID 7682472

Multiplex ADA Isotyping by LC-MS

Specific Surrogate Peptides for ADA Isotype/Subclass

Human Ig Isotype/subclass	Composition%*	Conc. (mg/mL)*	Surrogate peptide sequence	Peptide ID
IgG	80%	7.23 – 16.85	NQVSLTCLVK DTLMISR	pG
(IgG1)	65% of IgG	4.5 - 9.0	GPSVFPLAPSSK FNWYVDGVEVHNAK	pG1
(IgG2)	25% of IgG	1.8 – 5.3	VVSVLTVVHQDWLNGK GLPAPIEK	pG2
(IgG3)	5% of IgG	0.13 - 0.80	SCDTPPPCPR WYVDGVEVHNAK	pG3
(IgG4)	5% of IgG	0.08 - 1.0	YGPPCPSCPAPEFLGGPSVFLFPPKPK GLPSSIEK	pG4
IgM	8%	0.48 – 2.7	FTCTVTHTDLPSPLK GQPLSPEK VSVFVPPR	рМ
IgE	<0.03%	< 4.3 x 10 ⁻⁷	AEWEQK LEVTR	pE
IgA	12%	0.8 - 4.6	YLTWASR VAAEDWK	рА
IgD	<1%	≤ 0.14	SLWNAGTSVTCTLNHPSLPPQR	pD

*http://www.globalrph.com/labs_i.htm#

LC-MS Procedure

LC Separation

- 1) C18 LC column 2.1 x 100 mm, 3 μ m
- 2) Mobile phases: 0.1% formic acid/water (A); 0.1% formic acid/acetonitrile (B)
- 3) LC gradient: 5% 50% for 4 min
- 4) Flow-rate: 0.4 mL/min
- 5) Injection volume: 10 μ L
- 6) Run time/sample: 6 min

MS Detection

- 1) Triple Quadrupole (TQ) instrument (SCIEX 5500/6500)
- 2) Multiple Reaction Monitoring (MRM)
- 3) Monitoring isotype/subclass specific surrogate peptides
- 4) Peptide specific parameters: Declustering Potential (DP), Collision Energy (CE)

This generic LC-MS conditions are NOT project-specific and can be used for different projects

Representative Chromatograms of Surrogate Peptides

Human ADA controls at 1 μ g/mL in elution buffer

- Assay sensitivity at 50 ng/mL PC in serum (5 ng/mL for processed samples)
- Each surrogate peptide was monitored at a specific MRM ion transition
- The positive control and the residual drug in the extract can also be simultaneously measured
- The MS parameters for every surrogate are generic and suitable for different projects

Jiang H, et al. Bioanalysis. 2018, to be published

Drug Interferences

Drug Sensitivity and Tolerance

Drug (µg/mL)								
PC	$0 \mu g/mL$	$10 \mu g/mL$	$50\mu g/mL$	$200\mu g/mL$	800 µg/mL			
(ng/mL)	Drug	Drug	Drug	Drug	Drug			
0	<lloq< td=""><td><lloq< td=""><td><lloq< td=""><td><lloq< td=""><td><lloq< td=""></lloq<></td></lloq<></td></lloq<></td></lloq<></td></lloq<>	<lloq< td=""><td><lloq< td=""><td><lloq< td=""><td><lloq< td=""></lloq<></td></lloq<></td></lloq<></td></lloq<>	<lloq< td=""><td><lloq< td=""><td><lloq< td=""></lloq<></td></lloq<></td></lloq<>	<lloq< td=""><td><lloq< td=""></lloq<></td></lloq<>	<lloq< td=""></lloq<>			
50	8	7	7	6	<lloq< td=""></lloq<>			
100	16	13	15	12	6			
200	28	29	30	23	13			
400	60	48	54	49	26			
800	119	117	102	96	47			
1600	234	223	232	185	100			
3200	466	472	447	357	237			

Bristol-Myers Squibb 52

Screening and Confirmatory Cut Points (SCP, CCP)

Jiang H, et al. Bioanalysis. 2018, to be published

LC-MS Reduces Drug Interference (or False Negative)

Jiang H, et al. Bioanalysis. 2018, to be published

LC-MS Reduce False Positives

Pros and Cons

Pros

- Reduced drug interference
- Reduced false positive
- Generic assay
- Multiplex (ADA isotypes/drug)
- Direct ADA measurement
- Relative conc. of ADA
- Single labeled drug

Cons

- Less assay sensitivity
- Need PC with species-specific Fc
- Higher cost (beads, trypsin)

Other Formats To Mitigate Drug Interference

(high background)

• No drug interference

Cons:

Direct ADA measurement

• Drug without Fc or with Fc

Bristol-Myers Squibb

57

from different species

Poor assay sensitivity

(epitope masking)

Summary

- In this presentation, we discussed "why" and "how" to apply LC-MS in ADA measurement which is a novel application of LC-MS technology.
- LC-MS approach has unique features such as simple assay format, improved specificity/drug tolerance, and its capability of isotyping and multiplexing.
- The established experimental parameters are NOT project-dependent and need minimal method development work.
- Less sensitivity and higher cost (on supplies and instruments) are the major concerns.
- Right now, LC-MS approach is suitable for discovery studies. Its application in regulated clinical studies would be very challenging and needs more applications in the industries to obtain solid data and the feedback from regulatory agencies.

Plenty of Online Resources

Paper Reviews

- Wei C, et al, Current Pharmacology Reports, 2018: <u>https://doi.org/10.1007/s40495-017-0118-x</u> (Newest review for antibody and ADC bioanalysis)
- An B, et al, Drug Metab Dispos, 2014, 42:1858 (antibody and ADC bioanalysis)
- van den Broeka I, et al, Bioanalysis, 2015, 7: 1943 (intact protein bioanalysis)
- van den Broeka I, et al, Journal of Chromatography B, 2013, 929: 161 (peptide-based bioanalysis)

Intact protein ("top-down")

- Lanshoeft C, et al, Anal. Chem. 2017, 89: 2628
- Zhao Y, et al, Anal. Chem. 2017, 89: 5144
- Paula M, et al, J. Am. Soc. Mass Spectrom., 2016, DOI: 10.1007/s13361-016-1566-y
- David F. Keren, et al, Clin Chem Lab Med, 2016, 54: 947
- <u>https://www.chromacademy.com/_downloads/LCGC0817_Chrom</u> <u>Academy_Agilent%20eBook_16[3].pdf</u>

Peptide-based ("bottom-up")

- Furlong M, et al, Biomed. Chromatogr., 2012, 26: 1024
- Li H, et al, Anal. Chem. 2012, 84: 1267
- Jiang H, Anal. Chem. 2013, 85: 9859
- Palandra et al, Anal Chem, 2013, 85:5522
- Neubert H, et al, Anal. Chem. 2013, 85, 1719
- Gong C, Bioanalysis. 2014, 6:2371
- Jiang H, et al. Anal Chem, 2014, 86:2673
- Xu K, et al, Bioanalysis, 2014, 6: 1781
- John T Mehl, et al, Bioanalysis, 2016, 8: 1611
- Lin-zhi Chen, et al. J Immunol Res, 2016, Article ID 7682472
- Hendrik Neubert, et al. Anal Chem 2008, 80, 6907–6914
- Jiang H, et al. Bioanalysis. 2018 (to be published)

Webinars

- Agilent Webinars, "Improve Your Monoclonal Antibody Separations by Leveraging the Advantages of Superficially Porous Particle Columns" https://event.on24.com/wcc/r/1665069/BC2D61CD7E1AAB523C 85370A88AB9CD8
- LCGC Webcast, http://www.chromatographyonline.com/lcgc/webcasts
- LCGC's CHROMacademy, https://www.chromacademy.com/index.html
- *Need to register for free and then get notice for webinar broadcast*

Acknowledgements

- Jian Wang
- Zheming Gu
- Xuewen Wang
- Craig Titsch
- Billy Akinsanya
- Chao Gong
- Carol Gleason
- Kimberly Voronin
- Alban Allentoff

- Weifeng Xu
- Linlin Luo
- Naiyu Zheng
- Alex Kozhich
- Johanna Mora
- Murli Krishna
- Jon Haulenbeek

- Gerry Kolaitis
- Heather Myler
- Rob Dodge
- Jianing Zeng
- Renuka Pillutla
- Binodh DeSilva

Backup Slides

Quantification of the IgG2/4 kappa Monoclonal Therapeutic Eculizumab from Serum Using Isotype Specific Affinity Purification and Microflow LC-ESI-Q-TOF MS

- Dithiothreitol (DTT) only reduces disulfide bond between light and heavy chains
 Tris(2-carboxyethyl)phosphine (TCEP), a stronger reducing agent, also reduces light chain disulfide bond inconsistently
 Eksigent Ekspert 200 microLC
 MP-A: 0.1% FA in water; MP-B: 0.1% FA in 90% ACN/10% IPA
- Poroshell 300SB-C3 column (1.0 × 75 mm), 60 °C

• LC gradient: 20-47%B for 16.5 min

	Repeatability			Within-laboratory					
	1.0	1.5	15	75	1.5	15	50	75	150
N	19	19	19	20	16	15	15	15	17
Mean	1.1	1.2	18.3	88.2	1.6	16.0	57.0	79.3	153
SD	0.12	0.13	1.03	4.81	0.24	1.28	8.66	7.37	14.1
%CV	10.4%	10.8%	5.6%	5.5%	14.9%	8.0%	15.2%	9.3%	9.2%
Recovery	113%	81%	122%	118%	107%	107%	114%	106%	102%

Paula M, et al, J. Am. Soc. Mass Spectrom. (2016), DOI: 10.1007/s13361-016-1566-y

Sequential Protein and Peptide Immunoaffinity Capture for Mass Spectrometry-Based Quantification of Total Human β-Nerve Growth Factor

- Protein analyte immunocaptured (IC) with capture Ab on beads followed by trypsin digestion
- Tryptic peptide then IC by the online IC column followed by LC-MS analysis
- Peptide IC column: beads immobilized with the antipeptide antibody which generated by peptide-(KLH); keyhole limpet hemocyanin (KLH), 390kDa

Neubert H, et al, Anal. Chem. 2013, 85, 1719

Quantification of *in vivo* Site-specific Asp Isomerization and Asn Deamidation of mAbs in Animal Serum Using IP-LC–MS

Mehl JT, et al, Bioanalysis, 2016, 8: 1611

Generic Hybrid LC-HRMS-Based Workflow for Multiplexed Human IgG1 Quantification at Intact Protein Level: Application to Preclinical Pharmacokinetic Studies

Bristol-Myers Squibb

65

Measuring Monoclonal Proteins in Serum from Multiple Myeloma Patients

Keren DF, et al, Clin Chem Lab Med, 2016, 54: 947

A Multiplexed Immunocapture LC-MS/MS Assay for Simultaneous Measurement of Myostatin and GDF-11 in Rat Serum Using an Automated Sample Preparation Platform

Strategy for the Quantitation of a Protein Conjugate via Hybrid Immunocapture-Liquid Chromatography with Sequential HRMS and SRM-Based LC-MS/MS Analyses

Zhao Y, et al, Anal. Chem. 2017, 89, 5144-5151

Bristol-Myers Squibb 68